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In these notes, we are interested in tensor products of vector spaces. Unless other-
wise specified, “vector space” will mean real vector space, for the sake of concreteness.
However, (almost?) every definition, construction, etc., that we discuss works equally
well for vector spaces over any field.

The trivial vector space is the zero-dimensional vector space {0}; all other vector
spaces are called nontrivial.

Occasionally the zero-element of a vector space V will denoted 0V rather than just
0, but the reader is generally expected to realize from context what the notation “0”
means, even if it is used several times with different meanings in the same expression,
equation, etc.

The term “subspace” is used always in the sense of linear algebra, not topology.

For any vector space V , any v ∈ V , and any c ∈ R, we allow ourselves to write
cv as vc.

The symbol “N” is used in these notes to mark the end of various non-proof items
(e.g. definitions and remarks) when it might be unclear whether the item continues
into the next paragraph.

1 The free vector space generated by a set

Let S be any nonempty set.

The set Func(S,R) := {all functions from S to R} has a natural vector-space
structure in which the zero element is the identically-zero function, and vector-space
operations are defined pointwise: for f, g : S → R and c ∈ R, we define f+g : S → R
and cf : S → R by (f + g)(p) = f(p) + g(p) and (cf)(p) = c f(p). Henceforth,
the notation “Func(S,R)” will denote the corresponding vector space (i.e. the set
Func(S,R), endowed with this canonical vector-space structure), rather than just the
underlying set of functions.

A function f : S → R is said to have finite support if supp(f) :=
{p ∈ S | f(p) 6= 0} is a finite set.1 Let R[S] ⊂ Func(S,R) denote the set of
functions of finite support. It is easily seen that R[S] is a subspace of Func(S,R).

For each p ∈ S, define ep ∈ R[S] by

ep(q) := δp,q :=

{
1 if q = p
0 if q 6= p.

(1.1)

Then the collection
{ep}p∈S (1.2)

is a basis of R[S]. For this reason, we call R[S] the free vector space generated by

1This coincides with the topological notion of “finite support” if S is given the discrete topology.
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S.2 Observe that the dimension of R[S] is the cardinality of S (which might be
uncountable).

Some equivalent definitions of R[S] are:

R[S] = span({ep}p∈S) ⊂ Func(S,R)

= subspace of Func(S,R) generated by {ep}p∈S
= the set of all linear combinations3 of elements of {ep}p∈S
= smallest subspace of Func(S,R) containing {ep}p∈S.

Observe that, for every f ∈ R[S], we have f =
∑

p∈supp(f) f(p) ep. Given any

collection of real numbers {ap}p∈S such that ap = 0 for all but finitely many p, let us
adopt the convention that

∑
p∈S ap ep means the finite sum

∑
{p∈S | ap 6=0} ap ep ∈ R[S]

(where an empty sum is defined to be the zero element of R[S]). Then we may write
any element of R[S] in the form

∑
p∈S apep. We can canonically associate any such

expression with a unique formal linear combination of elements of S:∑
p∈S

ap ep ←→
∑
p∈S

ap p. (1.3)

It is conventional to write elements of the vector space R[S] in their associated
“formal linear combination” notation, and to endow the set of formal linear combi-
nations of elements of S with the vector-space structure induced by the 1-1 corre-
spondence (1.3). It is easily seen that, in the “formal linear combination” notation
for R[S], the vector-space operations are given by(∑

p∈S

ap ep

)
+

(∑
p∈S

bp ep

)
=

∑
p∈S

(ap + bp) ep,

c
∑
p∈S

ap ep =
∑
p∈S

(cap) ep (for any c ∈ R).

Since 1ep = ep, it is also conventional to allow ourselves to write “1p” just as p for
terms with coefficient 1 in a formal linear combination.

Remark 1.1 In the notation “{ep}p∈S,” the set S is being used as an index-set for
a natural basis B of R[S]. This generalizes an example with which you are already
familiar. If S = {1, 2, . . . , n}, where n ∈ N, then R[S] is canonically isomorphic
to Rn (as is Func(S,R)); an ordered n-tuple of real numbers is simply a presen-
tation of a function f : {1, 2, . . . , n} → R as a tabulation of its values as a list
(f(1), f(2), . . . , f(n)). For this set S, the basis {ep}p∈S is just the standard basis
{ej}nj=1 of Rn.

2This is the same meaning of “free” as in “free module (over a ring)”. A vector space is simply
a module over a field.
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For a general set S, formal-linear-combination notation simply takes advantage of
the one-to-one correspondence B ↔ S (given by ep ↔ p) to treat the set S notationally
as being the basis B, instead of just indexing B. For the specific set {1, 2, . . . , n}, we
would never elect to use formal-linear-combination notation, however; the notation
“
∑n

j=1 aj j” (or “
∑

j∈{1,...n} aj j”), as opposed to would be too easily confused with

the real number represented by the same notation, whereas the notation “
∑n

j=1 ajej”
does not have this problem. N

Remark 1.2 If the support of f ∈ R[S] is a given finite set {p1, . . . , pN}, then
instead of writing f using “Sigma notation”, we may choose to write f in the form
a1ep1 + · · · + aNepN . We allow ourselves to write the corresponding formal linear
combination similarly, as a1p1 + · · · + aNpN . Of course, we also allow ourselves to
write this as

∑N
i=1 aipi. Similarly, if the support of f is a set {pi}, with i running over a

finite but unspecified set, we allow ourselves simply to use the notation
∑

i ai pi—with
exceptions for some special a few sets S, as mentioned in Remark 1.1.

Remark 1.3 The expressions “
∑

p∈S ap p” and “a1p1 + · · · + aNpN” are just formal
linear combinations, since S here is just a set; in general there is no such thing as
“2 times an element of S” or “the sum of two elements of S”. It is important to
keep in mind that even when S does have some algebraic structure (for example,
if S itself is a vector space), the space of formal linear combinations of elements of
S does not change. This space still means the vector space generated freely by the
elements of S, and the expression “

∑
p∈S ap ep” is still just simplified notation for the

finitely-supported function p 7→ ap from S to R.

Remark 1.4 The space of formal linear combinations also inherits a subtraction
operation from R[S], which we still denote with a minus-sign. For example, if p, q
are distinct elements of S, then then the formal linear combination 2p − 3q is just
simplified notation for 2ep − 3eq = 2ep + (−3)eq, the function f : S → R satisfying
f(p) = 2, f(q) = −3, and f(x) = 0 for other x ∈ S.

Remark 1.5 There is a natural injective map ι : S → R[S], namely p 7→ ep, which
we sometimes refer to as the natural inclusion of S into R[S]. Indeed, if we use
formal-linear-combination notation, and allow ourselves to write “1p” simply as p
then ι looks exactly like an inclusion map:

ι : S → R[S],

p 7→ p. (1.4)

But take care not to be misled by the notational choices in (1.4): the p on the left of
(1.4) is simply an element of the set S, which in general has no algebraic structure,
whereas the p on the right of (1.4) is notation for a specific element of R[S] (namely
ep), a vector space no matter what the set S is!
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Remark 1.6 Suppose that V is a nontrivial vector space and that B is a basis of
V (see Section 6.1. Then every element of V can be written uniquely as

∑
v∈B av v,

where av ∈ R for all v ∈ B, and av = 0 for all but finitely many v ∈ B (we again
define the notation

∑
v∈B av v to mean the finite sum

∑
{v∈ B | av 6=0} av v). Then the

map

V → R[B],∑
v∈B

av v 7→ the formal linear combination
∑
v∈B

av v,

is an isomorphism. In other words, every nontrivial vector space V is isomorphic to
the free vector space generated by any basis of V .

2 Tensor product of two vector spaces

Throughout this section, there is an implicit “Let V and W be vector spaces” when-
ever the symbols V and W occur in hypotheses, definitions, etc., and have not ex-
plicitly been assumed to be vector spaces.

2.1 Definitions

Some objects that will be central to our discussion are bilinear maps. These are a
particular kind of map V × W → Z , where V,W,Z are vector spaces. For this
discussion, it is essential that the reader put aside any habit of treating the notation
“V ×W” as always meaning the vector space V ⊕W . When discussing bilinear maps,
we definitely do not want to treat the set V ×W as the vector space V ⊕W (or as
any other vector space).

A principle that should be clear by the end of this section is that tensor prod-
uct captures the essence of bilinearity. This “essence” has nothing to do with finite-
dimensionality, so we will not be assuming that our vector spaces are finite-dimensional.

Let V,W be vector spaces and let R[V ×W ] be the free vector space generated
by the set V ×W . We will shortly return to using the “formal linear combination”
notation for elements of R[V ×W ], but to avoid some potential confusion that Remark
1.3 already warned about) we will temporarily use our original function-notation for
R[V ×W ].

Define a set R(V,W ) ⊂ R[V ×W ] by

R(V,W ) = {e(v1+v2,w) − e(v1,w) − e(v2,w) | v1, v2 ∈ V ;w ∈ W}⋃
{e(v,w1+w2) − e(v,w1) − e(v,w2) | v ∈ V ;w1, w2 ∈ W}⋃
{e(cv,w) − ce(v,w) | c ∈ R; v ∈ V,w ∈ W}⋃
{e(v,cw) − ce(v,w) | c ∈ R; v ∈ V,w ∈ W},
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and let I(V,W ) denote the subpace of R[V ×W ] generated by R(V,W ). In “formal
linear combination” notation,

R(V,W ) = {(v1 + v2, w)− (v1, w)− (v2, w) | v1, v2 ∈ V ;w ∈ W} (2.5)⋃
{(v, w1 + w2)− (v, w1)− (v, w2) | v ∈ V ;w1, w2 ∈ W} (2.6)⋃
{(cv, w)− c(v, w) | c ∈ R; v ∈ V,w ∈ W} (2.7)⋃
{(v, cw)− c(v, w) | c ∈ R; v ∈ V,w ∈ W}, (2.8)

but in (2.5)–(2.8), it must be stressed that the minus-signs do not represent subtrac-
tion in the vector space V ⊕W , and that “c(v, w)” does not represent any operation
in the space V ⊕ W . The subtraction and scalar multiplication are operations on
R[V ×W ], not on V ×W . For example, the element of R[V ×W ] denoted c(v, w) (in
formal-linear-combination notation) is a function V ×W → R whose support consists
of the single point (v, w), where the function takes the value 1. Unless c = 1, this
function c(v, w) is quite different from the element of R[V ×W ] denoted (cv, cw), a
function V ×W → R whose support consists of the single point (cv, cw), where the
function takes the value 1.

Definition 2.1 The vector space V ⊗W (pronounced “V tensor W”) is the quotient
space R[V ×W ]/I(V,W ).

The tensor-product symbol “⊗” is also used on the level of elements v ∈ V and
w ∈ W :

Definition 2.2 For v ∈ V,w ∈ W , we define v ⊗ w ∈ V ⊗W by v ⊗ w = π(ι(v, w)),
where ι : V ×W → R[V ×W ] is the natural inclusion map (see Remark 1.5) and
π : R[V × W ] → R[V × W ]/I(V,W ) is the quotient map. To avoid confusion in
certain diagrams and expressions, we will sometimes write ⊗op for the map π ◦ i :
V ×W → V ⊗W (so v ⊗ w = ⊗op(v, w) for v ∈ V,w ∈ W ).

Thus π(
∑

i ci(vi, wi)) =
∑

i ci(vi ⊗ wi).

Proposition 2.3 The following relations hold in V ⊗W :

1. (v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w for all v1, v2 ∈ V and w ∈ W .

2. v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2 for all v ∈ V and w1, w2 ∈ W .

3. (cv)⊗ w = c(v ⊗ w) = v ⊗ (cw) for all v ∈ V,w ∈ W and c ∈ R.

Proof: Exercise.
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Corollary 2.4 The map ⊗op : V ×W → V ⊗W is bilinear, and its image spans
V ⊗W .

Proof: Exercise.

Remark 2.5 In general, the map ⊗op : V ×W → V ⊗W is neither injective nor
surjective, in general:

1. Two easy ways to see that injectivity fails are to observe that (i) for all nonzero
c ∈ R, we have (cv) ⊗ 1

c
w = v ⊗ w, and (ii) 0V ⊗ w = 0V⊗W = v ⊗ 0W for all

v ∈ V,w ∈ W. Thus, injectivity fails unless V = W = {0}.

2. Surjectivity fails whenever dim(V ) and dim(W ) are at least 2. This follows
quickly from a result proven later (Corollary 2.27) that shows that V ⊗W has
elements of rank 2. If ⊗op were surjective, then all elements of V ⊗W would
have rank 1 or 0.

Remark 2.6 The fact that the image of ⊗op spans V ⊗W says precisely that every
element of V ⊗W can be written as a linear combination of elements of the form
v⊗w, i.e. as

∑
i ci(vi⊗wi) for some finite lists of vectors vi ∈ V , wi ∈ W , and ci ∈ R.

But given such lists, if define v′i = cvi, then
∑

i ci(vi⊗wi) =
∑

i v
′
i⊗wi. Hence, more

simply, we can write every element of V ⊗W as a finite sum of the form
∑

i vi ⊗ wi,
i.e. a linear combination of elements of the form v⊗w but with all coefficients equal
to 1.

For a given T ∈ V ⊗ W , expressions of T in the form
∑

i vi ⊗ wi are highly
non-unique, for several reasons. One reason is illustrated by the following example:
suppose v, v1, v2 ∈ V and w,w1, w2 ∈ W are such that v = v1 + v2 and w = w1 + w2.
Then

v ⊗ w = v1 ⊗ w1 + v1 ⊗ w2 + v2 ⊗ w1 + v2 ⊗ v2 . (2.9)

N

The example (2.9) shows that we can always write any T ∈ V ⊗W as an arbitrarily
long sum of terms of the form v⊗w. But a reasonable question, for a given T , is how
short we can make such a sum.

Definition 2.7 Let T ∈ V ⊗W . We define the rank of T , as an element of V ⊗W
(there is an unrelated notion of rank that we will define in a later section), as follows:

• If T = 0 = 0V⊗W , the rank of T is 0 ∈ Z.
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• If T 6= 0, the rank of T is the smallest number of summands in an expression of
T as a finite sum of the form

∑
i vi ⊗ wi. I.e. rank(T ) is the smallest positive

integer r such that

T =
r∑
i=1

vi ⊗ wi (2.10)

for some v1, . . . , vr ∈ V and w1, . . . , wr ∈ W . We will refer to the right-hand
side of (2.10) as a minimal length expression of a rank-r element of V ⊗W .

Exercise 2.8 Let T ∈ V ⊗ W be an element of rank r > 0, and let∑r
i=1 vi ⊗wi be a minimal-length expression of T . Show that each of the lists (vi)

r
i=1

and (wi)
r
i=1 is linearly independent.4 (In particular, each of the sets {vi : 1 ≤ i ≤ r},

{wi : 1 ≤ i ≤ r} is a linearly independent set with exactly r elements, so we can
unambiguously use the notation {vi}ri=1 and {wi}ri=1 for these sets.) N

Even a minimal-length expression, as in (2.10), for a given element of V ⊗W is
nonunique. One issue is that for any nonzero c ∈ R, we have v ⊗ w = (cv) ⊗ 1

c
w,

so the element v ⊗ w ∈ V ⊗ W does not even determine v and w uniquely. But,
less trivially, suppose that {e1, e2} and {f1, f2} are linearly independent subsets of V
and W , respectively. We will see later (Proposition 2.23) that T := e1 ⊗ f1 + e2 ⊗ f2
does not have rank 0 or 1, hence has rank 2. But having rank 2 does not determine
e1, e2, f1, f2, even up to scalar multiples. For example, let e′1 = e1+3e2, e

′
2 = 2e1+4e2,

f ′1 = −2f1 + f2, and f ′2 = 3
2
f1 − 1

2
f2. Then

e′1 ⊗ f ′1 + e′2 ⊗ f ′2 = (e1 + 3e2)⊗ (−2f1 + f2) + (2e1 + 4e2)⊗ (
3

2
f1 −

1

2
f2)

= e1 ⊗ f1(−2 + 3) + e1 ⊗ f2(1− 1) + e2 ⊗ f1(−6 + 6)

+e2 ⊗ f2(3− 2)

= e1 ⊗ f1 + e2 ⊗ f2 .

Exercise 2.9 Show that if either V or W is the trivial vector space {0}, then so is
V ⊗W .

2.2 The universal property

Suppose now that V,W,Z are vector spaces and that B : V ×W → Z is a bilinear
map. Can we define a linear map L : V ⊗W → Z by “setting L(v⊗w) = B(v, w) for
all (v, w) ∈ V ×W and extending linearly”, analogously to the way we define linear
maps by defining them on a basis and extending linearly? (We would wish, of course,
for a unique such map L.)

4I used the word lists rather than sets or ordered sets initially since, by definition, the elements
of a set are distinct, whereas a list can have “repeats”.
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It’s not obvious that this procedure will work. Extending from a basis of a vector
space relies on the fact that a basis is linearly independent. But the set {v ⊗ w |
v ∈ V,w ∈ W}—call this the set of simple elements of V ⊗W— is highly linearly
dependent. If we can find a set of simple elements of V ⊗W that is a basis of V ⊗W ,
we could define a linear map by defining it on this basis and extending linearly . . . but
there is never a unique such basis (the example leading to equation (2.9) illustrates
part of the problem), and if dim(V ) and dim(W ) are at least 2, it is not obvious that
the linear map we get is independent of the choice of simple basis.

If V and W are finite-dimensional, we can obtain a basis of simple elements,
and show by “brute force” that the procedure above does determine a linear map
L : V ⊗W → Z that satisfies L(v ⊗ w) = B(v, w) for all (v, w) ∈ V ×W and is
independent of the choice of basis. (You will do this for a related universal property
later, in Exercise 4.20.) After doing things the hard way, we can better appreciate
the value of the following proposition.

Proposition 2.10 (Universal Property of Tensor Products) Let V,W be
vector spaces.

(a) The triple (V ×W,V ⊗W,⊗op) has the following universal property: for any
vector space Z, and any bilinear map B : V ×W → Z, there exists a unique linear map
LB : V ⊗W → Z such that LB(v ⊗w) = B(v, w) for all v ∈ V,w ∈ W (equivalently,
such that B = LB ◦ ⊗op, as indicated by the commutative diagram in Figure 1).

V ×W

B

V ⊗W

⊗op

?

LB
- Z

-

Figure 1: Diagram for Proposition 2.10(a)

(b) The pair (⊗op, V ⊗W ) is “unique up to isomorphism”, in the following sense:
if X is a vector space and T : V × W → X is another bilinear map such that
(V ×W,X, T ) has the universal property described in part (a), then there is an iso-
morphism L : V ⊗W → X such that T = L ◦ ⊗op.

Proof: (a) Let Z be a vector space and let B : V ×W be a bilinear map.

Writing elements of R[V ×W ] as formal linear combinations of elements of V ×W ,
the set V ×W is a basis of R[V ×W ]. But every function from a basis of a vector
space X to a vector space Y extends to a unique linear map from X to Y . In
particular this is true of the function B : V × W → Z. Hence there is a unique
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linear map L̃ : R[V ×W ] → Z such that L̃(v, w) = B(v, w) for all (v, w) ∈ V ×W .
Since L̃ is linear and B is bilinear, L̃ vanishes on every element of the set I(V,W )
in (2.5)–(2.8), and hence vanishes on span(I(V,W )) = I(V,W ) = kerπ. Hence
L̃ descends to a linear map L : R[V × W ]/I(V,W ) = V ⊗ W → Z satisfying
L(v ⊗ w) = L̃(v, w) = B(v, w) for all v ∈ V,w ∈ W . Thus the diagram in Figure 1
commutes.

Suppose now that L′ : V ⊗W → Z is another linear map for which this diagram
commutes. Then L′−L vanishes on the image of ⊗op. But this image spans V ⊗W .
Since L′ − L is linear, it follows that L′ − L vanishes identically on V ⊗W . Hence
L′ = L, establishing the uniqueness asserted in the Proposition.

(b) Below, we refer to the universal property described in part (a) simply as “the
universal property” for a given triple.

Let X be a vector space and let T : V ×W → X be a bilinear map such that
(V ×W,X, T ) has the universal property. Then, since ⊗op is bilinear, there exists a
linear map L1 : X → V ⊗W such that ⊗op = L1 ◦T . Since T is bilinear, the universal
property of (V ×W,V ⊗W,⊗op) implies that there exists a linear map L2 : V ⊗W → X
such that T = L2◦⊗op. Hence ⊗op = (L1◦L2)◦⊗op . But, again applying the universal
property of (V ×W,V ⊗W,⊗op), this time with Z = V ⊗W and B = ⊗op, there
is a unique linear map L : V ⊗W → V ⊗W such that ⊗op = L ◦ ⊗op . Since the
identity map idV⊗W is a linear map L : V ⊗W → V ⊗W satisfying ⊗op = L ◦ ⊗op ,
it follows that L1 ◦ L2 = IV⊗W . Similarly, L2 ◦ L1 = idX . Hence L2 : V ⊗W → X is
an isomorphism for which T = L2 ◦ ⊗op.

In view of Proposition 2.10, given a bilinear map B : V×W → Z, terminology such
as “the linear map L : V ×W → Z induced by B” or “the linear map L : V ⊗W → Z
determined by setting L(v ⊗ w) = B(v, w)” is well-defined. Furthermore, if we wish
to define a (particular) linear map L : V ⊗W → Z, it suffices to define a bilinear
map B : V ×W → Z, and take L to be the linear map V ⊗W → Z induced by B.

Corollary 2.11 Let V ′,W ′ be vector spaces and let A : V → V ′, B : W → W ′ be
linear maps. Then there is a unique linear map L : V ⊗W → V ′ ⊗W ′ satisfying
L(v ⊗ w) = (Av)⊗ (Bw) for all v ∈ V,w ∈ W .

Proof: Exercise.

Remark 2.12 The universal property in Proposition 2.10(a) is associated with the
triple (V ×W,V ⊗W,⊗op), not just the pair (V ×W,V ⊗W ), because this pair does
noit uniquely determine a bilinear map ⊗op : V ×W → V ⊗W for which the stated
universal property holds for (V ×W,V ⊗W,⊗′op) . For example, if we replace ⊗op by
⊗′op = 2⊗op, the triple (V ×W,V ⊗W,⊗op) still has the universal property; each of the
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correspong linear maps L′B : V ×W → Z is simply 1
2

times the LB in Figure1. More
generally if S : V ⊗W → V ⊗ V is any isomorphism, and we define ⊗′op = S ◦ ⊗op,
then ⊗′op : V ×W → V ⊗W is still bilinear, and the triple (V ×W,V ⊗W,⊗′op) still
has the universal property; each of the correspong linear maps L′B : V ×W → Z is
simply LB ◦ S−1.

Exercise 2.13 [TO BE WRITTEN] What can’t be changed in Prop 2.10:

The universal property in Proposition 2.10, rewritten in the equivalent way stated
parenthetically, says:

[F]or any vector space Z, and any bilinear map B : V ×W → Z, there
exists a unique linear map LB : V ⊗W → Z such that B = LB ◦ ⊗op.

This is sometimes stated informally, as “every bilinear map V ×W → Z factors
through a linear map V ⊗W → Z,” a reminder of much stronger statement made
by the universal property. The informal statement is imprecise; all it says (literally)
is that given any bilinear may B : V ×W → Z, there exist (not necessarily unique)
maps fB : V ×W → V ⊗W (not necessarily bilinear) and a linear map LB : V ⊗W ,
such that B = gB ◦ fB. Even if strengthened to “every bilinear map V ×W → Z
factors through a unique linear map V ⊗W → Z,” not strong enough.

With the informal statement interpreted literally, or with it replaced by several
stronger statements that are still not as strong as

–linearity of LB

–there isn’t just some map V ×W → V ⊗W through which each B factors (with
LB linear); the map ⊗op is bilinear.

–a bilinear map B : W → Z doesn’t just factor through some bilinear map
V ×W → V ⊗W and linear map V ⊗W → Z; the bilinear map ⊗op is the same for
all B.

–If uniqueness of LB deleted, then part (b) becomes false. (Related to: im(⊗)op
spans V ⊗W .)

Definition 2.14 (tensor product of two linear maps) Notation as in Corollary
2.11. The linear map L is called the tensor product of the linear maps A and B, and
is denoted A⊗B.

Thus, A⊗B : V ⊗W → V ′ ⊗W ′ is the unique linear map satisfying

(A⊗B)(v ⊗ w) = Av ⊗ Bw (2.11)

for all v ∈ V,w ∈ W.

Observe that the map idV ⊗ idW : V ⊗W → V ⊗W satisfies

(idV ⊗ idW )(v ⊗ w) = v ⊗ w for all v ∈ V, w ∈ W. (2.12)

11



Since elements of the form {v ⊗ w} span V ⊗W , this implies that

idV ⊗ idW = idV⊗W . (2.13)

Similarly, given vector spaces and maps V
A→ V ′

C→ V ′′ and W
B→ W ′ D→ W ′′, equation

(3.22) yields

(C ⊗D)
(

(A⊗B)(v ⊗ w)
)

= CAv ⊗ DBw = (CA⊗DB)(v ⊗ w),

for all v ∈ V, w ∈ W , implying

(C ⊗D) ◦ (A⊗B) = (CA)⊗ (DB). (2.14)

Exercise 2.15 Show that, for any vector space V , there are unique linear maps
V ⊗R→ V and R⊗ V → V satisfying v ⊗ 1 7→ v and 1⊗ v 7→ v, respectively, and
that these maps are isomorphisms.

Hence, V ⊗R and R⊗ V are canonically isomorphic to V . N

Remark 2.16 Let V,W be vector spaces and let τ̃ : V ×W → W × V be defined
by τ̃(v, w) = (w, v). Then τ̃ is bilinear, and hence determines a linear “transpose” or
“transposition” map τ : V ⊗W → W ⊗ V with the property that τ(v ⊗w) = w ⊗ v.

Exercise 2.17 Let V,W be vector spaces. Show that the transposition map
τ : V ⊗W → W ⊗ V defined in Remark 2.16 is an isomorphism.

Remark 2.18 There are many isomorphisms that we consider to be canonical. The
isomorphisms in Exercises 2.15 and 2.17 are among these. It is important to distin-
guish “canonically isomorphic” from “just-plain isomorphic”, even though “canoni-
cally isomorphic” has no precise, universally applicable definition. For example, any
two vector spaces V,Wof the same finite dimension n are isomorphic, but, in general,
are not canonically isomorphic (unless n = 0); there are inifinitely many isomorphisms
from one space to the other, none singled out just by virtue of V and W being vector
spaces of the same dimension.

In general, isomorphisms that we call canonical are induced by some defining
structure of the spaces involved, and do not involve any choices not already made,
e.g. choices of basis. Another rule of thumb is that whenever an isomorphism, or
other map or structure, is called canonical, there are categories and functors lurking
in the background.

Even among canonical isomorphisms, there are some that are “more canonical”
than others, so much so that we treat the underlying spaces as beng equal, not just
isomorphic. The isomorphisms in Exercise 2.15 are of this type; we allow ourselves to
abuse notation and write simply “V ⊗R = V = R⊗ V,” rather than something like
“V ⊗R ∼=

canon.
V ∼=

canon.
R ⊗ V.” However, unless W = V , the transpose isomorphism

in Exercise 2.17 is not of this type—we do not consider V ⊗W and W ⊗ V to be the
same space, for essentially the same reason that the sets V ×W and W × V are not
the same (even though there is a canonical bijection between them).
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Remark 2.19 We have now used the symbol “⊗”, without any subscripts or super-
scripts, at three different “levels”: at the level of vector spaces, where we have written
V ⊗W ; at the level of elements v ∈ V,w ∈ W , where we have written v ⊗ w; and
at the level of linear transformations A : V → V ′, B : W → W ′, where we have
written A ⊗ B. The latter two uses are not quite on the same footing as the first
use. If we let V denote the set of all vector spaces, then Definition 2.1 gives us a
binary operation V × V → V ,defined by (V,W ) 7→ V ⊗W . However, when we write
“v ⊗ w” (or even ⊗op(v, w)) as in Definition 2.2, the notation has no meaning except
in the context of two given vector spaces V and W , of which v and w (respectively)
are elements. We have not defined a binary operation on

⋃
{V : V is a vector space};

in the expression v ⊗ w, “⊗” is not a binary operation on one universal set. Nota-
tion such as “v ⊗(V,W ) w” and “⊗(V,W )

op (v, w)” would be more precise than v ⊗ w or
⊗op(V,W ). Similarly, when we write “A ⊗ B” for linear transformations A,B, the
notation makes sense only after specifying the domains and codomains of A and B;
we have not introduced a binary operation on the set of all linear transformations.

The cleanest way to assemble these different uses of “⊗” into a coherent whole is
via appropriate categories and functors; see Remark 2.20 and Exercise 2.21 below.

Remark 2.20 Let C be the category whose objects are vector spaces and whose mor-
phisms linear transformations. Then the tensor-product operations we have defined
for vector spaces and linear transformations can be encoded as a (covariant) func-

tor “
⊗̂

” from the product category C × C to the category C. In C × C, the objects
are ordered pairs (V,W ), where V and W are vectors spaces, and a morphism from
(V,W ) to (V ′,W ′) is a pair of linear maps (A,B) ∈ Hom(V, V ′)× Hom(W,W ′). For
this functor, the map from objects to objects is defined by setting⊗̂(

(V,W )
)

= V ⊗W.

For objects (V,W ), (V ′,W ′) of C × C, the map

Mor
(

(V,W ), (V ′,W ′)
)︸ ︷︷ ︸

morphisms in C × C

→ Mor(V ⊗W, V ′ ⊗W ′)︸ ︷︷ ︸
morphisms in C

= Mor(
⊗̂(

(V,W )
)
,
⊗̂(

(V ′,W ′)
)

is defined by ⊗̂(
(A,B)

)
= A⊗B

(where the RHS is defined as in Definition 2.14). Noting that the identity morphism
of an object (V,W ) of C × C is (idV , idW ) (by definition of “product category”),

equations (2.13) and (2.14), taken together, are precisely the statement that
⊗̂

is a
covariant functor.

Note that the statement “
⊗̂

is a functor” does not tell us how to define the
tensor product of vector spaces, linear transformations, or elements of vector spaces;
it simply encodes certain relationships. Having previously defined the element-level
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maps “⊗(V,W )
op ” : V × W → V ⊗ W , we were able to use them Definition 2.14

to define the tensor product of linear transformations, from which the morphism-
requirement equations (2.12) and then (2.13) followed. But if we start with the
morphism-requirement (2.13), we cannot deduce what the element “v⊗w” of V ⊗W
is from equation (2.12). The functor

⊗̂
, as defined above, encodes tensor-product

relations for vector spaces (as objects, not as sets) and linear transformations, but
not for elements of vector spaces.

To obtain a functor
⊗

that encodes, additionally, the relation between
⊗̂

and the

element-level maps “⊗(V,W )
op ” : V ×W → V ⊗W”, we need to start with a category

more refined than C. See Exercise 2.21 below. N

Exercise 2.21 Let C ′ be the category whose objects are pairs (V, v), where V is
a vector space and v ∈ V , and whose morphisms from (V, v) to (W,w) are linear
transformations carrying v to w:

Mor
(

(V, v), (W,w)
)

= {A ∈ Hom(V,W ) : Lv = w}.

(a) Show that C ′ is, indeed, a category, where we define the composition of mor-
phisms to be the composition of the corresponding linear maps.

(b) Given an object
(

(V, v), (W,w)
)

of C ′×C ′, define an object
⊗(

(V, v), (W,w)
)

of C ′ by ⊗( (
(V, v), (W,w)

) )
= (V ⊗W, v ⊗ w)

Given objects
(

(V, v), (W,w)
)

and
(

(V ′, v′), (W ′, w′)
)

of C ′ × C ′, and a (C ′ × C ′)-
morphism (A,B) ∈ Mor

( (
(V, v), (W,w)

)
,
(

(V ′, v′), (W ′, w′)
) )

, define a C ′ mor-
phism ⊗(

(A,B)
)
∈ Mor

(
(V ⊗W, v ⊗ w), (V ′ ⊗W ′, v′ ⊗ w′)

)
by ⊗(

(A,B)
)

= A⊗B.

Show that
⊗

is a covariant functor from C ′ × C ′ to C ′. N

2.3 Bases of V ⊗W

We start with an exercise that will be used in the proof of a subsequent proposition:

Exercise 2.22 Let (v, w) ∈ V ×W . Show that if v ⊗ w = 0 then v = 0 or w = 0.

Proposition 2.23 Let AV and AW be linearly independent subsets of V and W
respectively. Then the map AV ×AW → V ⊗W , (v, w) 7→ v ⊗ w, is one-to-one, and
the set {v ⊗ w | v ∈ AV , w ∈ AW} is linearly independent.
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Proof: It suffices to show that given any distinct e1, . . . , en ∈ AV and distinct
f1, . . . , fm ∈ AW , all the elements ei ⊗ fj are distinct, and the set

{ei ⊗ fj : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}} (2.15)

is linearly independent.

First, suppose there are distinct index-pairs (i1, j1), (i2, j2) such that

ei1 ⊗ fj1 = ei2 ⊗ fj2 (2.16)

Without loss of generality we may assume that (i1, j1) = (1, 1) and that (i2, j2) is one
of the pairs (2, 1), (1, 2), or (2, 2).

If (i2, j2) = (2, 1), then (2.16) becomes e1⊗f1 = e2⊗f1, implying (e1−e2)⊗f1 = 0.
Hence, by Exercise 2.22, at least one of the vectors e1− e2 and f1 must be zero. Since
the ei are assumed distinct, e1 − e2 6= 0, so f1 = 0, contradicting the assumed linear
independence of {fi}mi=1. Hence (i2, j2) 6= (2, 1).

Similarly (i2, j2) 6= (1, 2). Hence (i2, j2) = (2, 2), and (2.16) becomes e1 ⊗ f1 =
e2 ⊗ f2.

Extend the linearly independent sets {e1, e2} and {f1, f2} to bases BV ,BW of V,W
respectively (see Remark 6.1). Let θ : V → R and ϕ : W → R be the unique linear
maps (hence elements of V ∗,W ∗ respectively) satisfying

θ(e1) = 1 = ϕ(f1),

θ(v) = 0 if v ∈ BV \ {e1},
ϕ(w) = 0 if w ∈ BW \ {f1}.

Define B : V ×W → R by B(v′, w′) = 〈θ, v′〉〈ϕ,w′〉. (Here and below, the notation

〈·, ·〉 is being used for both the dual pairings V ∗ × V → R and W ∗ ×W → R; see Section

6.2.) Then B is bilinear, hence determines a linear map L : V ⊗W → R satisfying
L(v′⊗w′) = 〈θ, v′〉〈ϕ, ω′〉 for all (v′, w′) ∈ V ×W ′. But then L(e1⊗f1) = B(e1, f1) = 1
while L(e2 ⊗ f2) = B(e2, f2) = 0, contradicting e1 ⊗ f1 = e2 ⊗ f2.

Hence ei1 ⊗ fj1 6= ei2 ⊗ fj2 whenever (i1, j1) 6= (i2, j2).

Suppose now that {cij}i∈{1,...,n},j∈{1,...m} is a collection of real numbers for which∑
i,j c

ij ei ⊗ fj = 0. Extend {e1, . . . , en} and {f1, . . . , fm} to bases BV ,BW of V , W

respectively. For i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} define θi ∈ V ∗, ϕj ∈ W ∗ to be
the unique linear maps satisfying

θi(v) =

{
1 if v = ei,
0 if v ∈ BV \ {ei},

ϕj(w) =

{
1 if w = fj,
0 if w ∈ BW \ {fj},
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For 1 ≤ i ≤ n and 1 ≤ j ≤ m let B(i,j) : V ×W → R be the blinear map defined
by B(i,j)(v, w) = 〈θi, v〉〈ϕj, w〉, and let L(i,j) : V ⊗W → R be the induced linear map.
Then for all (i, j) we have

0 = L(i,j)(0) = L(i,j)

(∑
k,l

ckl ek ⊗ fl

)
=
∑
k,l

cklB(i,j)(ek, fl) =
∑
k,l

ckl δik δ
j
l = cij.

Hence the set (2.15) is linearly independent.

Corollary 2.24 Let BV ,BW be bases of the vector spaces V,W respectively. Then
the set

{v ⊗ w | v ∈ BV , w ∈ BW} (2.17)

is a basis of V ⊗W .

Proof: Suppose T ∈ V ⊗W . Then T =
∑r

i=1 vi ⊗ wi for some v1, . . . , vr ∈ V and
w1, . . . wr ∈ W . Expanding each vi (respectively wi) in terms of the basis BV (resp.
BW ), and using bilinearity of ⊗op, we obtain a re-expression of T as sum of the form∑

v∈BV ,w∈BW c(v,w)v⊗w, where all but finitely many of the coefficients c(v,w) are zero.
Hence the set (3.23) spans V ⊗ W . By Proposition 2.23, this set is also linearly
independent, hence is a basis of V ⊗W .

2.4 Several canonical maps

For any vector spaces V and W , the set of bilinear maps V ×W → R is easily seen
to be a subspace of RV×W . We denote this subspace Bihom(V ×W,R) and call it
the space of bilinear maps V ×W → R.

As we will see in Section 2.5, when V and W are finite-dimensional, several spaces
built from V and W are canonically isomorphic. For example,
V ∗ ⊗W ∗ ∼=

canon.
Bihom(V ×W, R) (which is often taken as a “quick and dirty” def-

inition of V ∗ ⊗W ∗ in the finite-dimensional case); V ∗ ⊗W ∼=
canon.

Hom(V,W ); and

V ∗⊗W ∗ ∼=
canon.

(V ⊗W )∗. These finite-dimensional isomorphisms stem from canonical

linear maps from the space on the left of the “ ∼=
canon.

” symbol to the space on the right,

maps whose definitions do not require finite-dimensionality. In general, without the
finite-dimensionality assumption, none of these maps is an isomorphism, but they do
turn out to be canonical injections (which can be thought of as inclusion maps). There
is also a canonical isomorphism not listed above: (V ⊗W )∗ ∼=

canon.
Bihom(V ×W,R).

In the proposition below, the canonical linear maps mentioned above are defined
(for arbitrary vector spaces), and their injectivity (and, in one case, surjectivity) is
established. We will make frequent use of the universal property of tensor products
(Proposition 2.10) without explicit reference to the term “universal property”.
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Proposition 2.25 Let V,W be vector spaces.

(a) For each B ∈ Bihom(V ×W, R), let LB ∈ (V ⊗W )∗ be the linear map V ⊗W →
R induced by B. Then the map

ι : Bihom(V ×W, R) → (V ⊗W )∗,

B 7→ LB,

is an isomorphism. Hence (V ⊗ W )∗ is canonically isomorphic to
Bihom(V ×W, R).

(b) For each (θ, ϕ) ∈ V ∗ ×W ∗ define a map B(θ,ϕ) : V ×W → R by

B(θ,ϕ)(v, w) = 〈θ, v〉〈ϕ,w〉. (2.18)

(Here the notation 〈·, ·〉 is being used for both the dual pairings V ∗ × V → R and

W ∗ ×W → R; see Section 6.2.) Then:

(i) For each (θ, ϕ) ∈ V ∗×W ∗, the map B(θ,ϕ) : V ×W → R is bilinear, hence
an element of Bihom(V ×W, R).

(ii) The map V ∗×W ∗ → Bihom(V ×W, R) given by (θ, ϕ) 7→ B(θ,ϕ) is bilinear,
and hence induces a linear map

j : V ∗ ⊗W ∗ → Bihom(V ×W, R)

satisfying j(θ ⊗ ϕ) = B(θ,ϕ) for all (θ, ϕ) ∈ V ∗ ⊗W ∗.

(iii) The linear map j is injective.

Hence there is a canonical injection

j : V ∗ ⊗W ∗ ↪→ Bihom(V ×W, R).

(c) There is a canonical injection

V ∗ ⊗W ∗ ↪→ (V ⊗W )∗,

namely the map ι ◦ j.

(d) For each (w, θ) ∈ W × V ∗, define T(w,θ) : V → W by

T(w,θ)(v) = 〈θ, v〉w. (2.19)

Then:

(i) For each (w, θ) ∈ W × V ∗, the map T(w,θ) : W × V ∗ → R is linear, hence
an element of Hom(V,W ).
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(ii) The map W × V ∗ → Hom(V,W ) given by (w, θ) 7→ T(w,θ) is bilinear, and
hence induces a linear map

ĵ : W ⊗ V ∗ → Hom(V,W )

satisfying ĵ(w ⊗ θ) = T(w,θ) for all (w, θ) ∈ W ⊗ V ∗.

(iii) The linear map ĵ is injective.

Hence, letting τ : V ∗⊗W → W⊗V ∗ denote the transposition isomorphism
(see Remark 2.16 and Exercise 2.17), the maps

ĵ : W ⊗ V ∗ ↪→ Hom(V,W )

and ĵ ◦ τ : V ∗ ⊗W ↪→ Hom(V,W )

are canonical injections.

(iv) Let T ∈ W⊗V ∗, let r = rank(T ) be the rank of T as an element of W⊗V ∗
(see Definition 2.7), and, if r > 0, let

∑r
i=1wi ⊗ ξi be a minimal-length

expression of T . Then if r > 0, im(ĵ(T )) = span{wi : 1 ≤ i ≤ r}, while if
r = 0 then im(ĵ(T )) = {0}. It follows that the rank of T as an element of
W ⊗ V ∗ coincides with the rank of the linear transformation ĵ : V → W
(i.e. the dimension of im(ĵ(T ))).

(e) For each (v, w) ∈ V ×W , define maps T ′(v,w) : V ∗ → W and T ′′(v,w) : W ∗ → V by

T ′(v,w)(θ) = 〈θ, v〉w (i.e. T ′(w,v)(θ) = T(w,θ)(v), where T(w,θ) is as in (2.19)) and,

analogously, T ′′(v,w)(ϕ) = 〈ϕ,w〉v. Then:

(i) For each (v, w) ∈ V ×W , the maps T ′(v,w) : V ∗ → W and T ′′(v,w) : W ∗ → V

are linear, hence are elements of Hom(V ∗,W ) and Hom(W ∗, V ) respec-
tively.

(ii) The maps T ′ : V ×W → Hom(V ∗,W ) and T ′′ : V ×W → Hom(W ∗, V )
defined by T ′(v, w) = T ′(v,w) and T ′′(v, w) = T ′′(v,w) are bilinear, and hence
induce linear maps

j′ : V ⊗W → Hom(V ∗,W ),

j′′ : V ⊗W → Hom(W ∗, V )

satisfying j′(v⊗w) = T ′(v,w) and j′′(v⊗w) = T ′′(v,w) for all (v, w) ∈ V ⊗W .

(iii) The linear maps j′ and j′′ are injective.

(iv) Let T ∈ V ⊗W , let r = rank(T ) be the rank of T as an element of V ⊗W
(see Definition 2.7), and, if r > 0, let

∑r
i=1 vi ⊗ wi be a minimal-length

expression of T . Then if r > 0, im(j′(T )) = span{wi : 1 ≤ i ≤ r}) and
im(j′′(T )) = span{vi : 1 ≤ i ≤ r}, while if r = 0 then im(j′(T )) = {0W}
and im(j′′(T )) = {0V }. It follows that the rank of T as an element of
V ⊗W , and the ranks of the linear transformations j′(T ) : V ∗ → W and
j′′(T ) : W ∗ → V , all coincide.
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(v) Let r > 0 and suppose that {v1, . . . , vr} and {w1, . . . wr} are linearly in-
dependent subsets of V and W respectively. Let T =

∑r
i=1 vi ⊗ wi. Then

rank(T ) = r.

Remark 2.26 In the finite-dimensional case, V ∗∗ = V , so part (e) would essentially
be redundant with part (d). But since we are not assuming finite-dimensionality of
V or W in Proposition 2.25, part (e) needs its own statement and proof.

Proof of Proposition 2.25: (a) Observe that if B1, B2 ∈ Bihom(V ×W, R) and
c1, c2 ∈ R, then for all (v, w) ∈ V ×W we have

Lc1B1+c2B2(v ⊗ w) = (c1B1 + c2B2)(v, w) = c1B1(v, w) + c2B2(v, w)

= c1LB1(v ⊗ w) + c2LB2(v ⊗ w).

It follows that Lc1B1+c2B2 = c1LB1 + c2LB2 . It follows that the map
ι : Bihom(V × W, R) → (V ⊗ W )∗ defined by ι(B) = LB is linear. We claim
that ι is an isomorphism.

First, suppose B ∈ ker(ι). Then LB = 0, so B(v, w) = LB(v ⊗ w) = 0 for all
(v, w) ∈ V ×W ; i.e. B = 0. Hence ι is injective.

To establish surjectivity, let T ∈ (V ⊗ W )∗. Define B : V × W → R by
B(v, w) = T (v ⊗ w). Then T = LB = ι(B). Hence ι is surjective, and is there-
fore an isomorphism.

(b) The bilinearity asserted in statements (i) and (ii) are easily seen from (2.18).
The remainder of (ii) follows from Proposition 2.10. For (iii), suppose kerL 6= 0 and
let T be a nonzero element of ker(L). Express T as a minimal-length sum of simple
elements of V ∗ ⊗W ∗:

T =
r∑
i=1

ξi ⊗ ηi ,

where r = rank(T ) ≥ 1. By Exercise 2.8, {ξi}ri=1 and {ηi}ri=1 are linearly independent
sets in V ∗,W ∗ respectively. Hence there exist sets {vi}ri=1, {wi}ri=1 in V,W respec-
tively, such that 〈ξi, vj〉 = δij = 〈ϕi, wj〉 for all i, j ∈ {1, . . . , r} (see Exercise 6.17).
Since L(T ) = 0, we have

0 = L(T )(v1, w1) =

(
r∑
i=1

L(ξi ⊗ ηi)

)
(v1, w1) =

r∑
i=1

〈ξi, v1〉〈ηi, w1〉 =
r∑
i=1

δi1δi1 = 1,

a contradiction.

Hence ker(T ) = {0}, and L is injective.

(c) Immediate from (a) and (b).

(d) Items (i)–(iii): exercise.
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(iv) First suppose r = 0. Then T = 0, so ĵ(T ) = 0 ∈ Hom(V,W ), implying
im(ĵ(T )) = {0} and rank(ĵ(T )) = 0 = r.

Now suppose r > 0, and let
∑r

i=1wi ⊗ ξi be a minimal-length expression of T .

From the definition of ĵ(T ), it is clear that im(ĵ(T )) ⊂ span{w1, . . . , wr} (this would
be true even without the “minimal length” hypothesis). As in the proof of part
(b), because “minimal length” ensures that the set {ξi}ri=1 is linearly independent
(Exercise 2.8), we may choose v1, . . . , vr ∈ V such that 〈ξi, vj〉 = δij = 〈ϕi, wj〉 for all
i, j ∈ {1, . . . , r}. But then for each j ∈ {1, . . . , r},

ĵ(T )(vj) =
r∑
i=1

T(wi,ξi)(vj) =
r∑
i=1

〈ξi, vj〉wi = wj .

Hence span{w1, . . . , wr} ⊂ im(ĵ(T )). Thus im(ĵ(T )) = span{wi : 1 ≤ i ≤ r}. But,
using Exercise 2.8 again, the set {wi}ri=1 is linearly independent, so rank(ĵ(T )) =
dim(span{wi}ri=1) = r = rank(T ).

(e) Exercise.

Corollary 2.27 Let r > 0 and suppose that dim(V ) and dim(W ) are both at least r.
Then V ⊗W contains elements of rank r.

Proof: This is immediate from Proposition 2.25(e)(v).

Corollary 2.28 Assume that at least one of the spaces V,W is finite-dimensional.
Then the maximal rank of elements of V ⊗W is min{dim(V ), dim(W )} . I.e. there
exists T ∈ V ⊗W for which rank(T ) = min{dim(V ), dim(W )}, and no element of
V ⊗W has larger rank.

Proof: Let r = min{dim(V ), dim(W )}. If r = 0 then at least one of the vector spaces
V,W is {0}, so V ⊗W = {0} and there is nothing to prove.

Thus, assume r > 0. Corollary 2.27 shows that V ⊗W has an element of rank r.
Exercise 2.8 shows that no element of V ⊗W can have rank greater than r.

2.5 The finite-dimensional case

In this subsection, we assume that both V and W are finite-dimensional, and let
n = dim(V ), m = dim(W ). We will assume n,m ≥ 1, since the cases n = 0 and
m = 0 are uninteresting (everything that needs to be said about these cases follows
immediately from Exercise 2.9).
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Proposition 2.29 Let {ei}ni=1 and {fi}mi=1 be bases of V and W respectively. Then

{ei ⊗ fj}1≤i≤n, 1≤j≤m

is basis of V ⊗W , and hence

dim(V ⊗W ) = dim(V ) dim(W ).

Proof: Immediate from Corollary 2.24.

Proposition 2.30 Let ι : Bihom(V × W, R) → (V ⊗ W )∗ be the canonical iso-
morphism defined in Proposition 2.25(a), let j : V ∗ ⊗W ∗ → Bihom(V ×W, R) and
ĵ : W⊗V ∗ → Hom(V,W ) be the canonical injections defined in Proposition 2.25 parts
(b) and (c), and let τ : V ∗ ⊗W → W ⊗ V ∗ be the transposition isomorphism (see
Remark 2.16 and Exercise 2.17). Then all of the following maps are isomorphisms:

j : V ∗ ⊗W ∗ → Bihom(V ×W, R),

ι ◦ j : V ∗ ⊗W ∗ → (V ⊗W )∗,

ĵ : W ⊗ V ∗ → Hom(V,W ),

and ĵ ◦ τ : V ∗ ⊗W → Hom(V,W ).

Hence, in each of the four lines above, the domain and codomain of the indicated map
are canonically isomorphic.

Proof: We have already seen that all four of the linear maps j, ι ◦ j, ĵ, and ĵ ◦ τ
are injections. By finite-dimensionality, dim(V ∗) = dim(V ) = n and dim(W ∗) =
dim(W ) = m, so (by Proposition 2.29) the spaces V ⊗W , (V ⊗W )∗, V ∗ ⊗W ∗,
W ⊗ V ∗, and V ∗ ⊗ W all have dimension nm. Since ι is an isomorphism,
Bihom(V×W, R) also has dimension nm. From elementary linear algebra, Hom(V,W )
is (non-canonically) isomorphic to the space of real m×n matrices, hence has dimen-
sion nm as well.

Hence, by equidimensionality of domain and codomain, the canonical linear injec-
tions j, i ◦ j, ĵ, and ĵ ◦ τ, are all isomorphisms.

Remark 2.31 (“tensor product” of two matrices) Let V ′,W ′ be vector spaces
of dimension n′,m′ ≥ 1, and let A ∈ Hom(V, V ′), B ∈ Hom(W,W ′). Keeping in mind
that matrix of a linear map V ⊗W → V ′ ×W ′, with respect to any given bases of
V ⊗W and V ′⊗W ′, will be of size (n′m′)× (nm), what is a good way to express the
matrix of A⊗B with respect to bases of the form in Proposition 2.29?

Let e := {ei}ni=1, f := {fi}mi=1, e
′ := {e′i}n

′
i=1, f ′ := {f ′i}m

′
i=1 be bases of V,W, V ′,W ′

respectively, and let Ã be the matrix of A with respect to the bases e and e′, and
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let B̃ be the matrix of B with respect to the bases f and f ′. Then, using Einstein
summation convention (i.e., summing over any repeated index that occurs once upstairs

and once downstairs), Aej = eiÃij and Bfl = fkB̃k
l , so

(A⊗B)(ej ⊗ fl) = e′i ⊗ f ′k ÃijB̃k
l (2.20)

(note that we are summing over both i and k on the RHS of (2.20)). To express this
in terms of matrix of the appropriate size, we need to order the bases {ej ⊗ fl} and
{e′i ⊗ f ′k}. For each of these, we choose the lexicographic ordering:

e1⊗f1, e1⊗f2, . . . , e1⊗fm, e2⊗f1, e1⊗f2, . . . , e2⊗fm, . . . , en⊗f1, e1⊗f2, . . . , en⊗fm,

etc. for {e′i ⊗ f ′k}. Thus, ej ⊗ fl is the
(

(j − 1)m + l
)th

element of our chosen
ordered basis of V ⊗W , where 1 ≤ j ≤ n and 1 ≤ l ≤ m. Similarly, e′i ⊗ f ′k is the(

(i− 1)m′ + k
)th

element of our chosen ordered basis of V ′ ⊗W ′, where 1 ≤ i ≤ n′

and 1 ≤ k ≤ m′. Thus the number ÃijB̃k
l in equation (2.20) is the entry in row

(i − 1)m′ + k and column (j − 1)m + l of the (n′m′) × (nm) matrix of A ⊗ B with
respect to the ordered bases above.5 Letting Ã⊗ B̃ denote this matrix, we can write
Ã⊗ B̃ in block form as 

Ã1
1 B̃ Ã1

2 B̃ . . . Ã1
n B̃

Ã2
1 B̃ Ã2

2 B̃ . . . Ã2
n B̃

...
...

...
...

Ãn
′
1 B̃ Ãn

′
2 B̃ . . . Ãn

′
n B̃

 . (2.21)

Note that, up to our choice to order a tensor-product basis lexicographically,
(2.21) followed directly from the standard convention for defining the matrix of a
linear transformation with respect to bases of the domain and codomain. In view of
this fact, given any matrices Ã ∈ Mn′×n(R), B̃ ∈ Mm′×m(R), we define the tensor
product Ã ⊗ B̃ to be the matrix (2.21) (even absent any explicit reference to linear
transformations). N

Remark 2.32 As a practical matter, the most important tensor products are those
of finite-dimensional vector spaces. In a first introduction to tensor products in the
finite-dimensional setting, given finite-dimensional vector spaces V and W , the space
“V ⊗W” is usually not defined directly. Instead the space that is defined directly is
V ∗⊗W ∗, which is taken to be the space Bihom(V ×W, R), a space to which V ∗⊗W ∗ is

5LaTeX note: Ordinarily, to prevent LaTeX from undesirably stacking a first-index superscript
directly over a second-index subscript (which would eliminate the distinction between which index
is first and which is second), protecting the superscripted expression with curly braces suffices. For
example, you can produce “Aij ” with “ $ { Aˆi } j $. ” However, when there is a tilde over the A,
LaTeX becomes very insistent on stacking the superscript directly over the subscript. To produce
the output “ Ãij ”, I used “ $ { Aˆi} {\ j} $. ”
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canonically isomorphic (see Proposition 2.30). In such a first introduction, the space
V ⊗W is usually not of direct importance, but, by the preceding, can be taken to
be the space Bihom(V ∗ ×W ∗, R), since V ∗∗ ∼=

canon.
V and W ∗∗ ∼=

canon.
W . This “quick-

and-dirty” approach allows much faster derivations of many results in these notes; it
really cannot be matched in efficiency.

But despite its efficiency, the quick-and-dirty approach is a bit of a cheat—even
though finite-dimensional vector spaces are the most important setting for tensor
products—and has several conceptual drawbacks:

• The notation “V ∗⊗W ∗” suggests that “⊗” (in this usage) is a binary operation,
producing a new vector space from the spaces V ∗ and W ∗. But the individual
vector spaces V ∗ and W ∗ do not even enter the definition of Bihom(V ×W, R),
leaving one with the nagging question of how to view “⊗” as an operation on
V ∗ and W ∗.

• It feels unsatisfying that the definition of V ⊗W should rely on the duals of
these spaces.

The fact that Definition 2.1 leads to the universal property in Proposition 2.10—
capturing the essence of bilinearity, a concept that does not depend on finite-
dimensionality—shows that Definition 2.1 should be viewed as the “true” or “cor-
rect” definition of tensor product. With this understanding, observe that showing
the equivalence of the “quick-and-dirty” definition of V ⊗ W to Definition 2.1 re-
quires two uses of finite-dimensionality: one to show that the canonical injection
V ∗⊗W ∗ ↪→ Bihom(V ×W, R) is an isomorphism, and one to show that V ∗∗ ∼=

canon.
V

and W ∗∗ ∼=
canon.

W . N

3 Tensor product of more than two spaces

3.1 Definitions and the universal property

Tensor products of more than two vector spaces are defined analogously to the two-
space case, and have analogous properties. We will run through the basics quickly
and informally.

Let V1, . . . , Vk be vector spaces. Let I(V1, . . . , Vk) ⊂ R[V1 × · · · × Vk] be the
subspace generated by all elements of any of the following forms (written in “formal
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linear combination” notation):

{(v1, . . . , vi−1, w + w′, vi+1, . . . , vk) − (v1, . . . , vi−1, w, vi+1, . . . , vk)

− (v1, . . . , vi−1, w
′, vi+1, . . . , vk),

where i ∈ {1, . . . , k}, w, w′ ∈ Vi,
and vj ∈ Vj for j ∈ {1, . . . , k} \ {j},

{(v1, . . . , vi−1, cvi, vi+1, . . . , vk) − c(v1, . . . , vi−1, vi, vi+1, . . . , vk),

where i ∈ {1, . . . , k},
vj ∈ Vj for j ∈ {1, . . . , k},
and c ∈ R.

(Above, it is understood that if i = 1 [respectively i = k], then the vectors vi−1 [resp.
vi+1] are omitted.) We then define

V1 ⊗ . . . ⊗ Vk := ⊗(k)(V1, . . . , Vk) := R[V1 × · · · × Vk]/I(V1, . . . , Vk);

π : R[V1 × · · · × Vk] → V1 ⊗ . . . ⊗ Vk , the quotient map;

ι : V1 × . . . × Vk → R[V1 × · · · × Vk] , the natural inclusion;

v1 ⊗ . . .⊗ vk := π(ι(v1, . . . , vk)) := ⊗(k)
op (v1, . . . , vk)

for v1 ∈ V1, . . . , vk ∈ Vk .

Thus π
(∑

µ cµ(v
(µ)
1 , . . . , v

(µ)
k )
)

=
∑

µ cµv
(µ)
1 ⊗ . . .⊗ v

(µ)
k .

Remark 3.1 Note that ⊗(2)(V1, V2) = V1 ⊗ V2 and that ⊗(2)
op : V1 × V2 → V1 ⊗ V2 is

the map called simply ⊗op in Section 2. We can even take k = 1 above: ⊗(1)(V ) = V

and ⊗(1)
op : V → V is simply the identity map idV . But note that an expression

such as v1 ⊗ v2 ⊗ . . . ⊗ vk is, so far, an “inseparable word”; for example, the “sub-
word” v1 ⊗ v2 does not yet mean ⊗(2)

op (v1, v2). Interpreting such sub-words the way
the notation suggests assumes that, in the notation v1 ⊗ v2 ⊗ . . . ⊗ vk, the symbol
“⊗” has an associativity property. The notation v1 ⊗ v2 ⊗ . . . ⊗ vk has been chosen
to reflect associativity that we will eventually see that the symbol ⊗ enjoys, but that
we have not addressed yet. We address associativity in Section 3.2.

Corollary 3.2 The map ⊗(k)
op : V1×· · ·×Vk → V1⊗ . . .⊗Vk is multilinear (i.e. linear

in each variable with the others held fixed), and its image spans V1 ⊗ . . .⊗ Vk.

Proof: Exercise.

Note that for k = 1, “multilinear” simply means “linear”.

Proposition 3.3 (Universal Property of Multiple Tensor Products) Let
V1, . . . , Vk be vector spaces.
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(a) The triple (V1×· · ·×Vk, V1⊗. . .⊗Vk, ⊗(k)
op ) has the following universal property:

for any vector space Z, and any multilinear map B : V1×· · ·×Vk → Z, there exists a
unique linear map LB : V1⊗ . . .⊗Vk → Z such that LB(v1⊗ . . .⊗ vk) = B(v1, . . . , vk)

for all v1 ∈ V1, . . . , vk ∈ Vk (equivalently, such that B = LB ◦ ⊗(k)
op , as indicated by

the commutative diagram in Figure 2).

V1 × · · · × Vk

B

V1 ⊗ . . .⊗ Vk

⊗(k)
op

?

LB
- Z

-

Figure 2: Diagram for Proposition 3.3(a)

(b) The pair (⊗(k)
op , V1 ⊗ . . .⊗ Vk) is “unique up to isomorphism”, in the following

sense: if X is a vector space and T : V1 × · · · × Vk → X is another multilinear map
such that (V1 ⊗ . . . ⊗ Vk, X, T ) has the universal property described in part (a), then

there is an isomorphism L : V1 ⊗ . . .⊗ Vk → X such that T = L ◦ ⊗(k)
op .

Proof: Exercise.

Corollary 3.4 Let V1, . . . Vk and V ′1 , . . . V
′
k be vector spaces and let Ai : Vi → V ′i be

linear maps, 1 ≤ i ≤ k. Then there is a unique linear map L : V1 ⊗ . . . ⊗ Vk →
V ′1 ⊗ . . .⊗ V ′k satisfying L(v1⊗ . . .⊗ vk) = (A1v1)⊗ . . .⊗ (Akvk) for all (v1, . . . , vk) ∈
V1 × · · · × Vk.

Proof: Exercise.

Exercise 3.5 Let V1, . . . , Vk be vector spaces. It is easily seen that
Multihom(V1 × · · · × Vk, R) := k-Hom(V1 × · · · × Vk, R) := {multilinear maps
V1 × · · · × Vk → R} is a subspace of RV1×···×Vk .

Generalize Proposition 2.25abc:

(a) Exhibit, with proof, a canonical isomorphism

ι : Multihom(V1 × · · · × Vk, R)→ (V1 ⊗ . . .⊗ Vk)∗ .

(b) Exhibit, with proof, a generalization of the linear map j in Proposition 2.25(b)
to an injective linear map j : V ∗1 ⊗ . . .⊗ V ∗k → Multihom(V1 × · · · × Vk, R).

(c) Conclude that j ◦ ι : V ∗1 ⊗ . . . ⊗ V ∗k → (V1 ⊗ . . . ⊗ Vk)∗ is a canonical linear
injection.
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Definition 3.6 (tensor product of k linear maps) Notation as in Corollary 3.4.
The linear map L is called the tensor product of the linear maps A1, . . . Ak , and is
denoted A1 ⊗ . . .⊗ Ak .

Thus, A1 ⊗ . . . ⊗ Ak : V1 ⊗ . . . ⊗ Vk → V ′1 ⊗ . . . ⊗ V ′k is the unique linear map
satisfying

(A1 ⊗ . . .⊗ Ak)(v1 ⊗ . . .⊗ vk) = A1v1 ⊗ . . .⊗ Akvk (3.22)

for all (v1, . . . , vk) ∈ V1 × · · · × Vk.

Proposition 3.7 Let V1, . . . , Vk be vector spaces and, for each i, let Bi be a basis of
Vi. Then the set

{v1 ⊗ . . .⊗ vk | vi ∈ Bi , 1 ≤ i ≤ k} (3.23)

is a basis of V1 ⊗ . . .⊗ Vk.

Proof: Exercise. (Extend proofs of Proposition 2.23 and Corollary 2.24 using
induction.)

Exercise 3.8 Notation as in Exercise 3.5, but assume now that V1, . . . , Vk are finite-
dimensional. Show that the linear map j in Exercise 3.5 is an isomorphism, and hence
that the three spaces V ∗1 ⊗ . . .⊗V ∗k , Multihom(V1×· · ·×Vk, R), and (V1⊗ . . .⊗Vk)∗
are canonically isomorphic to each other.

Exercise 3.9 Let the category C ′ be as defined in Exercise 2.21, and let (C ′)k be the
product category C ′ × C ′ × · · · × C ′︸ ︷︷ ︸

k copies

. Generalize the result of Exercise 2.21(b): show

that the relationships among k-fold tensor product of vector spaces, linear transfor-
mations, and elements, can be encoded by a covariant functor

⊗(k) : (C ′)k → C ′.

3.2 Associativity

Proposition 3.10 Let V1, V2, V3 be vector spaces. Then the natural bijections
(V1 × V2)× V3 ↔ V1 × V2 × V3 ↔ V1 × (V2 × V3) induce isomorphisms

ι1 : V1 ⊗ V2 ⊗ V3 → (V1 ⊗ V2)⊗ V3,
ι2 : V1 ⊗ V2 ⊗ V3 → V1 ⊗ (V2 ⊗ V3)

satisfying

ι1(v1 ⊗ v2 ⊗ v3) = (v1 ⊗ v2)⊗ v3,
ι2(v1 ⊗ v2 ⊗ v3) = v1 ⊗ (v2 ⊗ v3),

for all (v1, v2, v3) ∈ V2 × V2 × V3.
In particular, the three spaces V1 ⊗ V2 ⊗ V3, (V1 ⊗ V2) ⊗ V3, and V1 ⊗ (V2 ⊗ V3)

are canonically isomorphic.
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Proof: The composition

V1 × V2 × V3 −→
natural

bijection

(V1 × V2)× V3 −→
⊗(2)

op × id
V3

(V1 ⊗ V2)× V3 −→
⊗(2)

op

(V1 ⊗ V2)⊗ V3

is simply the trilinear map (v1, v2, v3) 7→ (v1 ⊗ v2) ⊗ v3. By Proposition 3.3, this
trilinear map determines a unique linear map ι1 : V1 ⊗ V2 ⊗ V3 → (V1 ⊗ V2)⊗ V3 for
which ι1(v1 ⊗ v2 ⊗ v3) = (v1 ⊗ v2)⊗ v3 . Similarly, there we obtain a canonical linear
map ι2 : V1 × V2 × V3 → V1 ⊗ (V2 ⊗ V3).

Let B1,B2,B3 be bases for V1, V2, V3 respectively. By Corollary 2.24 (or Proposition
3.7 with k = 2), the set {b1 ⊗ b2 | (b1, b2) ∈ B1 × B2} is a basis of V1 ⊗ V2, and,
consequently, B := {(b1⊗b2)⊗b3 | (b1, b2, b3) ∈ B1×B2×B3} is a basis of (V1⊗V2)⊗V3.
By Proposition 3.7, B′ := {⊗(3)

op (b1, b2, b3) = b1 ⊗ b2 ⊗ b3 | (b1, b2, b3) ∈ B1 × B2 × B3}
is a basis of V1 ⊗ V2 ⊗ V3. Since ι1 carries the basis B bijectively to the basis B′, the
map ι1 is an isomorphism. Similarly, ι2 is an isomorphism.

It is easily seen that Proposition 3.10 generalizes. For example, for any k, l ∈ N
with k < l, and vector spaces V1, . . . , Vl the natural bijection

(V1 × · · · × Vk)× (Vk+1 × · · · × Vl)→ V1 × · · · × Vk × Vk+1 × · · · × Vl
induces a canonical isomorphism

(V1 ⊗ . . .⊗ Vk)⊗ (Vk+1 ⊗ . . .⊗ Vl) →∼= V1 ⊗ . . .⊗ Vl (3.24)

satisfying

(v1 ⊗ . . .⊗ vk)⊗ (vk+1 ⊗ . . .⊗ vl) 7→ v1 ⊗ . . .⊗ vl
(equivalently, ⊗(2)

op

(
⊗(k)

op (v1, . . . , vk),⊗(l)
op(vk+1, . . . , vl)

)
= ⊗(k+l)

op (v1, . . . , vk+l) )

(3.25)

for all (v1, . . . , vl) ∈ V1 × · · · × Vl .

Convention 3.11 Since the canonical isomorphisms in Proposition 3.10 and, more
generally, in (3.24), are induced simply by re-parenthesizing Cartesian products of
the vector spaces Vi, we will regard them as equalities (cf. the third paragraph of
Remark 2.18); e.g. we will write

(V1 ⊗ . . .⊗ Vk)⊗ (Vk+1 ⊗ . . .⊗ Vl) = V1 ⊗ . . .⊗ Vl (3.26)

and, for elements vi ∈ Vi, write

(v1 ⊗ . . .⊗ vk)⊗ (vk+1 ⊗ . . .⊗ vl) = v1 ⊗ . . .⊗ vl . (3.27)

(This abuse of notation can be avoided by introducing appropriate equivalence rela-
tions on appropriate sets, and defining tensor product of equivalence classes. We are
choosing not to add that baggage to this presentation. This spares us from having to
penetrate the potential forest of notation illustrated in (3.25).)
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Remark 3.12 . . . [Why I didn’t just define tensor product of more than two vector
spaces by iterating the binary operations (V,W )→ V ⊗W and (v, w) 7→ v ⊗ w. ]

Remark 3.13 . . . [The appropriate categories and functors.]

4 Tensor product of multiple copies of the same

vector space

Throughout this section:

• V is a vector space.

• k ∈ N.

• Sk := {permutations of {1, . . . , k} }, the symmetric group on k slements.

• The sign of a permutation σ ∈ Sk is denoted (−1)σ.

• V k denotes the k-fold Cartesian product V × · · · × V︸ ︷︷ ︸
k copies

• V ⊗k denotes the k-fold tensor product V ⊗ . . .⊗ V︸ ︷︷ ︸
k copies

.

4.1 Action of the symmetric group

The symmetric group Sk acts on V k in a natural way: for σ ∈ Sk and v := (v1, . . . , vk) ∈
V k, we define

T̃σ(v) := σ · v := σ · (v1, . . . , vk) := (vσ−1(1), . . . , vσ−1(k)); (4.28)

i.e. (σ · v)i = vσ−1(i). With this definition—which is the one for which the action of

σ on v moves vi to the σ(i)th slot—we have T̃ρσ = T̃ρ ◦ T̃σ; i.e. the action by Sk is a
left-action, consistent with our notation (“σ · v” rather than “v · σ”).6 Note that vi
is the ith vector in a k-tuple v of vectors; there are no components of vectors, relative
to whatever basis, involved in these formulas.

For each σ ∈ Sk, the map

⊗(k)
op ◦ T̃σ : V k → V ⊗k,

(v1, . . . , vk) 7→ vσ−1(1) ⊗ . . .⊗ vσ−1(k),

6For purposes of these notes, it is immaterial whether we use the natural left action or natural
right action, the latter being defined by (v · σ)i = vσ(i). define (σ · v)i to be vσ−1(i) or vσ(i). Our
choice to use the left-action was simply a matter of notational preference.
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is clearly multilinear, and hence determines a unique linear map Tσ : V ⊗k → V ⊗k

satisfying Tσ ◦ ⊗(k)
op = ⊗(k)

op ◦ T̃σ . For ρ, σ ∈ Sk we have

Tρ ◦ Tσ ◦ ⊗(k)
op = Tρ ◦ ⊗(k)

op ◦ T̃σ = ⊗(k)
op ◦ T̃ρ ◦ T̃σ = ⊗(k)

op ◦ T̃ρσ = Tρσ ◦ ⊗(k)
op (4.29)

Since the image of ⊗(k)
op spans V ⊗k, (4.29) shows that Tρσ = Tρ ◦ Tσ, i.e. that the

map Sk × V k → V k given by (σ, h) 7→ Tσ(h) is a left-action of Sk on V ⊗k. For this
reason we will generally use the notation “σ·” for Tσ : V ⊗k → V ⊗k, as well as for
T̃σ : V k → V k.

Definition 4.1 Let v1, . . . , vk ∈ V .

1. The symmetric product of v1, . . . , vk is

v1� v2� · · · � vk :=
∑
σ∈Sk

σ · (v1⊗ . . .⊗ vk) =

(∑
σ∈Sk

Tσ

)
(v1⊗ . . .⊗ vk) ∈ V ⊗k.

(4.30)

2. The wedge product of v1, . . . , vk (in the indicated order) is

v1∧v2∧· · ·∧vk :=
∑
σ∈Sk

(−1)σσ·(v1⊗. . .⊗vk) =

(∑
σ∈Sk

(−1)σTσ

)
(v1⊗. . .⊗vk) ∈ V ⊗k.

(4.31)

N

For example,

v1 � v2 = v1 ⊗ v2 + v2 ⊗ v1,
v1 ∧ v2 = v1 ⊗ v2 − v2 ⊗ v1,

and

v1 ∧ v2 ∧ v3 = v1 ⊗ v2 ⊗ v3 + v2 ⊗ v3 ⊗ v1 + v3 ⊗ v1 ⊗ v2
−v1 ⊗ v3 ⊗ v2 − v2 ⊗ v1 ⊗ v3 − v3 ⊗ v2 ⊗ v1 .

Remark 4.2 Some people prefer to normalize the definition of v1 � v2 � · · · � vk by
putting a “ 1

k!
” in front of the sum over the symmetric group, so that for the k-fold

symmetric product of a vector with itself, one has v � v � · · · � v = v ⊗ v ⊗ . . .⊗ v.

Exercise 4.3 Let v1, . . . , vk ∈ V and let σ ∈ Sk. Show that

σ · (v1 � v2 � · · · � vk) = v1 � v2 � · · · � vk

and that
σ · (v1 ∧ v2 ∧ · · · ∧ vk) = (−1)σv1 ∧ v2 ∧ · · · ∧ vk .
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4.2 Symmetric powers Symk(V ) and their universal property

The kth symmetric power of V , or k-fold symmetric tensor product of V , is the set

Symk(V ) := {h ∈ V ⊗k : σ · h = h for all σ ∈ Sk}. (4.32)

Exercise 4.4 (a) Show that Symk(V ) is a subspace of V ⊗k.

(b) From Definition 4.1, it is clear that the map V k → V ⊗k given by (v1, . . . , vk) 7→
v1 � · · · � vk is multilinear, and hence determines a linear map Pk : V ⊗k → V ⊗k.
Show that the image of Pk is precisely Symk(V ), and that if h ∈ Symk(V ), then
Pk(h) = c(k)h, where c(k) = k! . (Thus, up to a constant factor, Pk is a projection
map from V ⊗k onto the subspace Symk(V ).)

Definition 4.5 A multilinear map B : V k → Z (where Z is a vector space) is
symmetric if B(σ · v) = B(v) for all σ ∈ Sk and all v ∈ V k.

Note that since transpositions generate the symmetric group, a sufficient condition
forB to be symmetric is thatB(σ·v) = B(v) for all transpositions in Sk and all v ∈ V k.

Proposition 4.6 (Universal Property of Symmetric Tensor Product)

Let �(k) : V k → Symk(V ) be the map (v1, . . . , vk) 7→ v1 � · · · � vk.
(a) The triple (V k, Symk(V ),�(k)) has the following universal property: for any

vector space Z, and any symmetric multilinear map B : V k → Z, there exists a
unique linear map LB : Symk(V ) → Z such that LB(v1 � · · · � vk) = B(v1, . . . , vk)
for all (v1, . . . , vk) ∈ V k (equivalently, such that B = LB ◦ �(k), as indicated by the
commutative diagram in Figure 3).

V k

B

Symk(V )

�(k)

?

LB
- Z

-

Figure 3: Diagram for Proposition 4.6(a)

(b) The pair (�(k), Symk(V )) is “unique up to isomorphism”, in the following
sense: if X is a vector space and T : V k → X is another symmetric multilinear map
such that (V k, X, T ) has the universal property described in part (a), then there is an
isomorphism L : Symk(V )→ X such that T = L ◦ �(k).
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Proof: Exercise.

Corollary 4.7 Let V,W be vector spaces and let A : V → W be a linear map. Then
there is a unique linear map L : Symk(V )→ Symk(W ) satisfying L(v1 � · · · � vk) =
Av1 � · · · � Avk for all (v1, . . . , vk) ∈ V k.

Proof: Exercise.

Definition 4.8 (symmetric powers of a linear map) Notation as in Corollary
4.7. We call the linear map L the kth symmetric power of A, and denote it Symk(A) .

Thus, Symk(A) : Symk(V )→ Symk(W ) is the unique linear map satisfying

(Symk(A))(v1 � · · · � vk) = Av1 � · · · � Avk (4.33)

for all (v1, . . . , vk) ∈ V k.

Proposition 4.9 Assume that V has finite dimension n, and let {ei}ni=1 be a basis
of V . Then the set

{ei1 � · · · � eik | 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n} (4.34)

is a basis of Symk(V ), and dim(Symk(V )) =
(
n+k−1

k

)
.

Proof: Exercise.

Exercise 4.10 Show that if V is finite-dimensional, then Symk(V ∗) is canonically
isomorphic to (Symk(V ))∗.

4.3 Exterior powers
∧k(V ) and their universal property

The kth exterior power of V , or k-fold wedge product of V , is the set∧k(V ) := {ξ ∈ V ⊗k : σ · ω = (−1)σξ for all σ ∈ Sk}. (4.35)

Exercise 4.11 (a) Show that
∧k(V ) is a subspace of V ⊗k.

(b) From Definition 4.1, it is clear that the map V k → V ⊗k given by (v1, . . . , vk) 7→
v1∧· · ·∧vk is multilinear, and hence determines a linear map Altk : V ⊗k → V ⊗k. Show
that the image of Altk is precisely

∧k(V ), and that if ξ ∈
∧k(V ), then Altk(ξ) = c(k)ξ,

where c(k) = k! (Thus, up to a constant factor, Altk is a projection map from V ⊗k

onto the subspace
∧k(V ).)
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Definition 4.12 A multilinear map B : V k → Z (where Z is a vector space) is called
alternating, or antisymmetric, or totally antisymmetric, if B(σ · v) = (−1)σB(v) for
all σ ∈ Sk and all v ∈ V k.

Note that since transpositions generate the symmetric group, and the sign-
homomorphism σ 7→ (−1)σ is (indeed) a homomorphism Sk → {±1, ·}, a sufficient
condition for B to be symmetric is that B(σ · v) = −B(v) for all transpositions in Sk
and all v ∈ V k.

Proposition 4.13 (Universal Property of Wedge Product)

Let ∧(k) : V k →
∧k(V ) be the map (v1, . . . , vk) 7→ v1 ∧ · · · ∧ vk.

(a) The triple (V k,
∧k(V ),∧(k)) has the following universal property: for any vec-

tor space Z, and any alternating multilinear map B : V k → Z, there exists a unique
linear map LB :

∧k(V ) → Z such that LB(v1 ∧ · · · ∧ vk) = B(v1, . . . , vk) for all
(v1, . . . , vk) ∈ V k (equivalently, such that B = LB ◦ ∧(k), as indicated by the commu-
tative diagram in Figure 4).

V k

B

∧k(V )

∧(k)

?

LB
- Z

-

Figure 4: Diagram for Proposition 4.13(a)

(b) The pair (∧(k),
∧k(V )) is “unique up to isomorphism”, in the following sense:

if X is a vector space and T : V k → X is another symmetric multilinear map such
that (V k, X, T ) has the universal property described in part (a), then there is an
isomorphism L :

∧k(V )→ X such that T = L ◦ ∧(k).

Proof: Exercise.

Corollary 4.14 Let V,W be vector spaces and let A : V → W be a linear map.
Then there is a unique linear map L :

∧k(V )→
∧k(W ) satisfying L(v1 ∧ · · · ∧ vk) =

Av1 ∧ · · · ∧ Avk for all (v1, . . . , vk) ∈ V k,

Proof: Exercise.
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Exercise 4.15 (a) Show that for k > 1 , Symk(V ) ∩
∧k(V ) = {0}.

(b) Show that V ⊗ V = Sym2(V )⊕
∧2(V ) (direct sum of subspaces).

(c) Show that part (b) does not extend to higher-order tensor products: if k > 2
and dim(V ) > 1, then V ⊗k is not spanned by the subspaces Symk(V ) and

∧k(V ).

Definition 4.16 (exterior powers of a linear map) Notation as in Corollary
4.14. We call the linear map L the kth exterior power of A, and denote it

∧k(A).

Thus,
∧k(A) :

∧k(V )→
∧k(W ) is the unique linear map satisfying

(
∧k(A))(v1 ∧ · · · ∧ vk) = Av1 ∧ · · · ∧ Avk (4.36)

for all (v1, . . . , vk) ∈ V k.

Proposition 4.17 Assume that V has finite dimension n, and let {ei}ni=1 be a basis
of V . For k ≤ n, the set

{ei1 ∧ · · · ∧ eik | 1 ≤ i1 < i2 < · · · < ik ≤ n} (4.37)

is a basis of
∧k(V ), and dim(

∧k(V )) =
(
n
k

)
.

Proof: Exercise.

Exercise 4.18 Let k ∈ N.

(a) Show that if V is finite-dimensional, then
∧k(V ∗) is canonically isomorphic to

(
∧k(V ))∗, and also canonically isomorphic to the space

Ak(V ) := {ω : V k → R | ω is multilinear and alternating}.

(The notation is “local” to these notes, not standard.) See Remark 4.19.

(b) Define a map

∧̃(k) : (V ∗)k → Ak(V ),

(η1, . . . , ηk) 7→ η1 ∧̃ η2 ∧̃ . . . ∧̃ ηk ,

by

η1 ∧̃ η2 ∧̃ . . . ∧̃ ηk (v1, v2, . . . , vk) =
1

k!

∑
σ∈Sk

(−1)σ η1(vσ1) η2(vσ2) . . . ηk(vσ(k))

Let ι :
∧k(V ∗) → Ak(V ) be the canonical isomorphism you used to prove part (a).

Show that the following diagram (Figure 5) commutes:
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(V ∗)k

∧̃(k)

∧k(V ∗)

∧(k)

?

ι
- Ak(V )

-

Figure 5: Diagram for Exercise 4.18(b)

Remark 4.19 In the introduction to exterior algebra usually presented in an intro-
duction to differential forms on manifolds, if M is manifold and p ∈ M , the space∧k(T ∗pM) is usually defined to be the space Ak(TpM).

Exercise 4.20 The purpose of this exercise is to illustrate how much simpler the
universal properties in Propositions 2.10, 3.3, 4.6, and 4.13 can make certain argu-
ments. For simplicity, we illustrate this only for the universal property of exterior
powers (and only for finite-dimensional vector spaces). In this exercise, the goal is to
prove Corollary 4.14 for finite-dimensional V and W without making use any of
the universal properties mentioned above.

To make things as simple as possible, assume for this exercise that, for a finite-
dimensional vector space V , the second result in Exercise 4.18(a) is taken as the
definition of

∧k(V ∗) (cf. Remark 4.19):
∧k(V ∗) := Ak(V ). In view of this definition

and the conclusion of Exercise 4.18(b), replace the notation “∧̃” in Exercise 4.18(b)
by “∧”.

Note that it suffices to prove Corollary 4.14 with the general finite-dimensional
vector spaces V and W replaced by their duals, since V ∗∗ := (V ∗)∗ is canonically
isomorphic to V in the finite-dimensional case.

(a) Let V be vector space with finite, positive dimension n, let B := {θi}ni=1 be a
basis of V ∗, and assume k ≤ n. Without using Proposition 4.17, prove that the
set

{θi1 ∧ · · · ∧ θik | 1 ≤ i1 < i2 < · · · < ik ≤ n}
is linearly independent and spans

∧k(V ∗), hence is a basis of
∧k(V ∗).

(b) Notation and hypotheses as in (a). Let W be another finite-dimensional vector
space and let A : V ∗ → W ∗ be a linear map. In view of part (a), we can define a
linear map “

∧k(A;B)” from
∧k(V ∗)→

∧k(W ∗) by setting∧k(A;B)(θi1 ∧ · · · ∧ θik) := Aθi1 ∧ · · · ∧ Aθik

for each strictly increasing mutli-index (i1, . . . , ik), and extending linearly. Since the
definition of

∧k(A;B) relied explicitly on the choice of basis B, it is reasonable to ask
whether choosing a different basis B′ leads to a different map

∧k(A;B′).

34



To answer this question, show (without using Proposition 4.13 or Corollary
4.14) that

(
∧k(A;B))(η1 ∧ · · · ∧ ηk) = Aη1 ∧ · · · ∧ Aηk (4.38)

for all (η1, . . . , ηk) ∈ (V ∗)k. (Thus, in particular, this holds if the ηi are drawn from
another basis B′ of V ∗.) N

5 Induced inner products

Throughout this section, V and W are vector spaces.

5.1 Some generalities about real-valued bilinear maps

In Section 2 we related the space Bihom(V × W,R) (and its elements) to tensor
products. Some general features of bilinear maps V × W → R for which tensor-
products are not in the foreground, and were omitted from Section 2 for this reason,
are discussed below.

Every bilinear map B : V ×W → R canonically defines linear maps B̃1 : V → W ∗

and B̃2 : W → V ∗ by setting

B̃1(v) = B(v, ·) : W → R, (5.39)

B̃2(w) = B(·, w) : V → R. (5.40)

For the rest of this subsection, given any bilinear map B : V × W → R, the
notation B̃1, B̃2 is as in (5.39)–(5.40).

Exercise 5.1 Show that if V and W are finite-dimensional, then each of the maps
B̃1, B̃2 is the natural adjoint of the other, modulo the canonical identification of a
finite-dimensional vector space with its double dual. (See Definition 6.6.)

Exercise 5.2 Let T : Bihom(V,W )× V ×W → R be map defined by

T (B, v, w) = B(v, w).

Show that T is trilinear, and that the maps

β1 : Bihom(V ×W, R)→ Hom(V,W ∗), β1(B) = B̃1, (5.41)

and
β2 : Bihom(V ×W, R)→ Hom(W,V ∗), β2(B) = B̃2, (5.42)

are isomorphisms. N
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There is some special terminology for bilinear maps V ×W → R when V and W
are the same vector space:

Definition 5.3 A bilinear form on a vector space V is a bilinear map V × V → R.
A quadratic form on V is a symmetric bilinear form.

Thus, an inner product is a positive-definite quadratic form.

. . . [ “kernel” for symmetric/antisymmetric bilinear forms on V ]

Definition 5.4 For finite-dimensional vector spaces V and W, a bilinear map
B : V ×W → R is called nondegenerate if the maps B̃1 : V → W ∗ and B̃2 : W → V ∗

are isomorphisms.

A nondegenerate bilinear map V ×W → R is also called a perfect pairing between
the finite-dimensional vector spaces V and W .7 N

Obviously, in the setting of Definition 5.4, a necessary condition for nondegeneracy
of B is that dim(V ) = dim(W ).

Two common examples of perfect pairings are the dual pairing V ∗ × V → R
and an inner product V × V → R (for finite-dimensional V ). For inner products,
nondegeneracy follows from positive-definiteness; see Exercise 5.6 below.

Exercise 5.5 Assume that V and W are finite-dimensional, and let B : V ×W → R
be a blinear map. Show that B̃1 is an isomorphism ⇐⇒ B̃2 is an isomorphism.

Hence, in Definition 1, we could replace the condition that both maps B̃1, B̃2 are
isomorphism by the condition that at least one of them is an isomorphism. N

Exercise 5.6 Let V and W be finite-dimensional vector spaces of equal dimension,
and let B : V ×W → R be a bilinear map. Show that B is nondegenerate iff for all
v ∈ V ,

B(v, w) = 0 for all w ∈ W =⇒ v = 0; (5.43)

equivalently, if ker(B̃1) = {0}.

Remark 5.7 The reason we have restricted attention to finite-dimensional vector
spaces for most of this subsection is that in the infinite-dimensional case, even when
B is an inner product on a vector space V , condition (5.43) is not enough to imply that
the map B̃1 ( = B̃2 since an inner product is symmetric) is an isomorphism. In the
infinite-dimensional case a bilinear map V ×W → R is called weakly nondegenerate
if ker(B̃1) = {0} = ker(B̃2).

7The “perfect pairing” terminology is seen more often when V and W are different vector spaces
than when they are the same space.
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5.2 [decide title]

Let g : V × V → R, h : W ×W → R be bilinear maps. Then the map

V ×W × V ×W → R,

(v, w, v′, w′) 7→ g(v, v′)h(w,w′),

is multilinear, and hence determines a linear map L : V ⊗W ⊗ V ⊗W → R. But
V ⊗W ⊗ V ⊗W = (V ⊗W )⊗ (V ⊗W ) (see (3.24) and Convention 3.11), so we may
view L as a linear map (V ⊗W )⊗(V ⊗W )→ R. The map ⊗op : (V ⊗W )×(V ⊗W )→
(V ⊗W )⊗ (V ⊗W ) (for this “⊗op”, replace each of the spaces V,W in Figure 1 with our

currrent V ⊗W ) then pulls L back to a bilinear map

g ⊗ h = L ◦ ⊗op : (V ⊗W )× (V ⊗W )→ R

(thus g ⊗ h ∈ Bihom
(

(V ⊗W )× (V ⊗W ), R
)
) satisfying

(g ⊗ h)(v ⊗ w, v′ ⊗ w′) = g(v, v′)h(w,w′)

for all v, v′ ∈ V and w,w′ ∈ W.
The notation “g ⊗ h” warrants some explanation. By definition

g ∈ Bihom(V × V, R) and h ∈ Bihom(W × W, R), so we may form the tensor
product of g and h as an element of Bihom(V × V, R)⊗ Bihom(W ×W, R). Let us
temporarily denote this tensor product as g⊗′ h. There is a canonical linear injection
Bihom(V × V, R)⊗Bihom(W ×W, R) ↪→ Bihom

(
(V ⊗W )× (V ⊗W ), R

)
defined

by the following composition:

Bihom(V × V, R)⊗ Bihom(W ×W, R)
canon. iso.−→ (V ⊗ V )∗ ⊗ (W ⊗W )∗

(see Proposition 2.25(a))
canon. injection

↪→
(

(V ⊗ V )⊗ (W ⊗W )
)∗

(see Proposition 2.25(c))
canon. iso.−→

(
(V ⊗W )⊗ (V ⊗W )

)∗
(using associativity and

Exercise 2.17)
canon. iso.−→ Bihom

(
(V ⊗W )× (V ⊗W ), R

)
(see Proposition 2.25(a)).

This composition carries g⊗′ h to the element we have denoted g⊗h ∈ Bihom
(

(V ⊗
W )× (V ⊗W ), R

)
(see Exercise 5.8 below). Since all the maps above are canonical,

we are allowing ourselves to write the image of the “literal” tensor product g ⊗′ h
simply as g⊗h. Note also that if V and W are finite-dimensional, then by Proposition
2.30, all four maps in this composition are isomorphisms, so that g ⊗ h is the image
of the literal tensor product of g and h under a canonical isomorphism.
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Exercise 5.8 Check that in the argument above, the indicated composition carries
g ⊗′ h to g ⊗ h, as claimed.

Exercise 5.9 (a) Show that if each of the bilinear maps g, h is symmetric, then so
is g ⊗ h.

(b) Assume now that g and h are inner products: positive-definite as well as
symmetric. You will show below that g ⊗ h is an inner product as well. By part (a),
we already know that g ⊗ h is symmetric; the question is positive-definitness.

(i) Assume that {ei}ni=1 ⊂ V and {fi}mi=1 ⊂ W are, respectively a g-orthonormal
and an h-orthonormal set (not necessarily bases; we are not assuming finite-
dimensionality.) Show that {ei ⊗ fj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a (g ⊗ h)-
orthonormal set.

(ii) Using part (i), Show that g ⊗ h is positive-definite, hence an inner product.

In view of the result of Exercise 5.9, it would be reasonable to call g⊗h a “tensor-
product inner product”. But because that terminology is so awkward, we will borrow
differential geometers’ habit of referring to an inner product as a metric:

Terminology (tensor-product metric). If g, h are inner products on V,W respec-
tively, we refer to the inner product g ⊗ h on V ⊗W as a tensor-product metric.

To emphasize: this terminology uses“metric” in the sense of “Riemannian metric
at a point”, not in the sense of “distance function” (i.e. not with the metric-space
meaning).

6 Appendix: Linear Algebra “Review”

Some basic linear-algebraic facts that are often omitted from linear-algebra courses
are “reviewed” here.

6.1 Bases

In any nontrivial vector space, whether finite- or infinite-dimensional, a basis B (in the
purely algebraic sense) is defined to be a linearly independent spanning-set; equiv-
alently, a maximal linearly independent set (where “maximal” means that for any
v /∈ B, the set B ∪ {v} is linearly dependent); equivalently, a minimal spanning set
(where “minimal” means that if v ∈ B, then B \ {v} does not span).8

8In a Hilbert space, and other topological vector spaces, sometimes “basis” is taken to mean a
linearly independent B for which the closure of span(B) is the entire space, rather than requiring
B itself to span the entire space. For finite-dimensional vector spaces, these two meanings of basis
coincide, but for infinite-dimensional vector spaces. In the infinite-dimensional case, sometimes a
basis in the purely algebraic sense is called a Hamel basis, to avoid any potential misinterpretation.
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In order not to exclude the trivial vector space {0} from various statements in-
volving bases, it is conventional to define the empty set ∅ to be a basis of this space.
Clearly ∅ is the only linearly independent set, hence is maximal among these. The
“empty linear combination” is assigned the value 0, making ∅ a minimal spanning set
for {0}.9

Remark 6.1 It is not obvious that an arbitrary infinite-dimensional vector space has
a basis; for example, if you try to write down a basis of the space of all functions
R→ R (or something “tamer” like the space all continuous functions [0, 1]→ R, or
the space L2([0, 1])), you are not likely to succeed, and you might convince yourself
that a basis couldn’t possibly exist. However, with the aid of Zorn’s Lemma, one can
quickly show that every nontrivial vector space does, indeed, have a basis; in fact,
more generally any linearly independent subset of a vector space can be extended to
a basis. (Proof: Let V be a vector space and let B be a linearly independent subset of a

vector space V . Let S = {A ⊂ S | A is linearly independent and B ⊂ A}. The set S is

partially ordered by inclusion. Any chain C ⊂ S has an upper bound, namely
⋃
A∈C A.

Hence, by Zorn’s Lemma, S contains at least one maximal element.)

Remark 6.2 In these notes, we are using existence of bases of arbitrary vector spaces
(with no assumption of finite-dimensionality) just to unify the presentation. A basis
whose construction requires Zorn’s Lemma (or anything else equivalent to the Axiom
of Choice) is essentially useless for any practical purpose, or for providing an intuitive
understanding of anything. For a finite-dimensional vector space, the usual, construc-
tive proof of existence of a basis is far more useful and important than a proof that
uses Zorn’s Lemma. N

If B is a basis of the vector space V , then every v ∈ V can be written uniquely as
a linear combination of elements of B; we may use the notation v =

∑
u∈B au u, with

the understanding that this notation means the finite sum
∑

u∈B | au 6=0} and where
au ∈ R for all u ∈ V .

Given vector spaces V and W , a basis B of V , and an arbitrary function f :
B → W , we can extend f to a linear map L : V → W , setting L(

∑
v∈B av v) :=∑

v∈B av f(v). Since the representation of any given x ∈ V as a linear combination of
elements in B is unique, the linear map L defined this way is the unique extension of
f to a linear map from V to W .

6.2 V ∗ and Hom(V,W )

Let S be any nonempty set. As noted in Section 1, pointwise operations define a
vector-space structure on the set Func(S,R). Similarly, for any vector spaceW , point-
wise operations define a vector-space structure on the setW S := {all functions from S to W}.

9A general convention for Σ-notation is that in any vector space V , any sum of the form
∑
α∈A vα,

where vα ∈ V for all α ∈ A, is assigned the value 0V if A = ∅, and is called the empty sum in V .
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Let V,W be vector spaces. In these notes, the notation Hom(V,W ) ⊂ W V denotes
the space of all linear maps from V → W . As is easily checked, Hom(V,W ) is a
subspace of W V .

Definition 6.3 (Dual space) The (algebraic) dual of V is V ∗ := Hom(V, R).

For v ∈ V and θ ∈ V ∗, we define 〈θ, v〉 := θ(v). With this notation, the dual
pairing 〈·, ·〉 is a bilinear map V ∗ × V → R. When more than one vector space is
under discussion (e.g. V and W ) we may use notation such as “〈·, ·〉V ” and “〈·, ·〉W”
for emphasis, even though context usually singles-out the only possible dual pairing
we could be using in a given expression.

Exercise 6.4 Let V be a nontrivial vector space and let v ∈ V be a nonzero element.
Show that there exists θ ∈ V ∗ such that 〈θ, v〉 = 1.

Remark 6.5 Let V be a vector space. For each v ∈ V , define the evaluation map
evv : V ∗ → R by evv(θ) = θ(v) = 〈θ, v〉. Clearly this evaluation map is linear, hence
is an element of V ∗∗ := (V ∗)∗. The map ev : V → V ∗∗ defined by v 7→ evv is easily
seen to be linear and injective, hence can be thought of as a canonical inclusion of
V into V ∗∗ (i.e. we can think of V as a subspace of V ∗∗ if we agree that, when we
regard v ∈ V as an element of V ∗∗, we mean the element evv ∈ V ∗∗).

In general, a linear map A : V → W does not determine a linear map W → V .
But any function f : W → X pulls back, via A, to a function V → X, namely f ◦A.
If X is a vector space and f is linear, then f ◦ A is linear as well. Hence A does
determine a linear map W ∗ = Hom(W,R)→ V ∗ = Hom(V,R):

Definition 6.6 (natural adjoint of a linear map) Let A ∈ Hom(V,W ). The
natural adjoint of A is the linear map A∗ : W ∗ → V ∗ defined by

A∗ξ := A∗(ξ) = ξ ◦ A. (6.44)

Note that equation (6.44) can be written equivalently as

〈A∗ξ, v〉V = 〈ξ, Av〉W for all v ∈ V . (6.45)

(The subscripts V and W could be omitted without causing any ambiguity, since on
each side of the equation in (6.45), there is only one dual pairing that makes sense.)

[Note to self: I may want to change notation “A∗” later.]

Exercise 6.7 Let A ∈ Hom(V,W ) and let A∗ ∈ Hom(W ∗, V ∗) be the natural adjoint
of A.

(a) Prove that if A is surjective, then A∗ is injective.

(b) Prove that if A is injective, then A∗ is surjective.

(c) Why does the combination of (a) and (b) not turn either statement into an “if
and only if”?
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Exercise 6.8 (a) Prove that the map Hom(V,W )→ Hom(W ∗, V ∗) given by A 7→ A∗

is linear.

(b) Let A ∈ Hom(V,W ). Show that A∗∗ := (A∗)∗ ∈ Hom(V ∗∗,W ∗∗) “restricts”
to A under the canonical inclusions evV : V ↪→ V ∗∗, evW : W ↪→ W ∗∗ (See Remark
6.5). I.e. show that A∗∗ ◦ evV = evW ◦ A (where evV (v) is what was called evv in
Remark 6.5, etc. for W ).

Exercise 6.9 Let V,W,Z be vector spaces and let B : V → W and A : W → Z be
linear maps. Show that (A ◦B)∗ = B∗ ◦ A∗.

Remark 6.10 Let C be the category whose objects are vector spaces and whose
morphisms linear transformations. Exercise 6.9 shows that, in this setting, dualization
is a contravariant functor C → C. Under this functor, an object V is mapped to the
dual space V ∗, and a morphism A is mapped to the natural adjoint A∗.

Proposition 6.11 For f ∈ Func(S,R), define Tf : R[S]→ R by setting

Tf

(∑
p∈S

ap p

)
:= Tf

(∑
p∈S

ap ep

)
=
∑
p∈S

apf(p).

(In the first sum above we used “formal linear combination” notation. In the second
sum we simply re-expressed the first sum using the notation (1.1)–(1.2), to prevent
any misunderstanding of the notation in the first sum.)

1. For all f ∈ Func(S,R), the map Tf : R[S] → R linear (hence an element of
(R[S])∗), and may be defined equivalently as the unique linear map T ′ : R[S]→
R satisfying T ′(ep) = f(p) for all p ∈ S.

2. The map T : Func(S,R)→ (R[S])∗ defined by T (f) = Tf is an isomorphism.

Hence (R[S])∗ is canonically isomorphic to Func(S,R).

Proof: Exercise.

Remark 6.12 In analysis, topological vector spaces (vector spaces equipped with
a topology that renders the vector-space operations continuous) are of paramount
importance. In that setting, the notation Hom(V,W ) is often reserved for the space
of continuous linear maps V → W , and the notation V ∗ is used for the continuous
dual of V , the space of continuous linear maps V → R.)

A norm on a vector space V determines a metric, and therefore a topology. For
any finite-dimensional vector space, this topology is independent of the choice of norm
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(this is not true for infinite-dimensional vector spaces), and may thus be called “the
norm topology” unambiguously. See Section 6.7.

The standard topology on a finite-dimensional vector space is the norm topology.
When a finite-dimensional vector space is treated as a topological space without
any topology having been specified explicity, the norm topology is being assumed
implicitly.

All linear maps between finite-dimensional vector spaces are continuous (with
respect to the norm topologies on the domain and codomain), so there is never any
ambiguity in what the notation Hom(V,W ) means in the finite-dimensional setting.

In general, infinite-dimensional vector spaces do not have a canonical topology,
and the choice of topologies on domain and codomain affects which linear maps are
continuous. If an infinite-dimensional vector space V is defined in such a way that
V automatically acquires a particular norm, then generally the topology determined
by that norm is assumed. But infinite-dimensional vector spaces admit inequivalent
norms, defining different topologies. There are also infinite-dimensional topological
vector spaces whose topology is not any norm topology. N

6.3 The dual of a basis

Let V be a nontrivial vector space and suppose that B is a basis of V . For each
v ∈ B, the function ev : B → R defined in (1.1) extends to a unique linear map
θv : V → R. Thus, the linear map θv ∈ V ∗ satisfies θv(w) = δv,w for all v, w ∈ B. Let
B′ = {θv : v ∈ B}. It is easily seen that B′ is linearly independent. We may call B′
the subset of V ∗ dual to B.

If dim(V ) is finite, it is easy to show that B′ spans V ∗ (Exercise 6.13 below), hence
is a basis of V ∗ (which also proves that dim(V ∗) = dim(V )); we call B′ the basis of
V ∗ dual to B (or simply “the dual basis” if there is enough context to make it clear
what basis of V this basis of V ∗ is dual to). If dim(V ) is infinite, then in general B′
will not span V ∗.

Exercise 6.13 Let V be a finite-dimensional vector space and let n = dim(V ).

(a) Check that if V = {0} (equivalently, if n = 0), then V ∗ = {0}.

(b) Assume n > 0, let B := {ei}ni=1 be a basis of V , and let {θi}ni=1 be the subset
of V ∗ dual to B. Show that the linearly independent set {θi}ni=1 spans V ∗ by
showing that each ξ ∈ V ∗ satisfies ξ =

∑n
i=1 ai θ

i, where ai = 〈ξ, ei〉. Hence
{θi}ni=1 is a basis of V ∗.

Deduce from (a) and (b) that dim(V ∗) = dim(V ). N

Corollary 6.14 (of Exercise 6.13) Suppose V is finite-dimensional. Then the
canonical inclusion ev : V ↪→ V ∗∗ (see Remark 6.5) is an isomorphism, and hence
the spaces V and V ∗∗ are canonically isomorphic.
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Proof: By Exercise6.13, dim(V ∗∗) = dim(V ∗) = dim(V ). Hence, by equidimension-
ality, the canonical injection V ↪→ V ∗∗ is an isomorphism.

Remark 6.15 Of course, by equidimensionality alone, a finite-dimensional vector
space V is isomorphic to V ∗, and V ∗ is isomorphic to V ∗∗. The point of Corollary
6.14 is that the isomorphism from V to its double-dual is canonical, whereas, in
general, there is no canonical isomorphism from V to its dual. (The “in general”
matters. There is a large, important class of vector spaces for which there is a
canonical isomorphism from V to its dual, namely finite-dimensional inner-product
spaces. An inner product determines an isomorphism from a finite-dimensional vector
space to its dual; see [later]. There are also other forms of additional structure, not
just inner products, that can determine an isomorphism V → V ∗.)

Corollary 6.16 Suppose V and W are finite-dimensional and let A ∈ Hom(V,W ).
Then A∗∗ = A, modulo the canonical identifications of V ∗∗,W ∗∗ with V,W respec-
tively.

Proof: Immediate from Exercise 6.8 and Corollary 6.14 and

Exercise 6.17 Let V be a vector space (not necessarily finite-dimensional) and sup-
pose that {ξ1, . . . , ξn} is a linearly independent set in V ∗. Without using Zorn’s
Lemma (or anything else equivalent to the Axiom of Choice), show that there exist
v1, . . . , vn ∈ V such that 〈ξi, vj〉 = δij for all i, j ∈ {1, . . . , n}.

6.4 Finite-dimensional vector spaces: algebraic aspects

Let Mm×n(R) denote the space of m × n matrices. In keeping with the standard
conventions for relating linear algebra to matrix algebra, we view elements of Rn as
column vectors (equivalently, n× 1 matrices)

With Rn identified with the space of n-component column vectors, matrix multi-
plication identifies the space of n-component row vectors (equivalently, 1×n matrices)
with (Rn)∗. The dual pairing (Rn)∗ ×Rn → R is given simply by 〈 th, v〉 = θv (the
product of a 1×n matrix θ on the left and an n×1 matrix v on the right). The matrix-
transpose operation Mn×1(R)→M1×n(R) is a (canonical) isomorphism Rn → (Rn)∗,
but this isomorphism relies heavily on extra structure that Rn has that a general n-
dimensional vector space lacks. (In particular, Rn has a canonical basis, the standard
basis.) The existence of this simple, explicit isomorphism Rn → (Rn)∗, together with
the fact that the standard inner product on Rn can be written as (v, w) 7→ vTw, is
the source of many misunderstandings and inaccurate statements, some about inner
products and some about tensors.

When we first learn linear algebra, we get into the habit of writing all indices as
lower indices (subscripts): we write the components of v ∈ Rn as vi; we write the
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entries of A ∈Mm×n(R) in the form Aij or aij, with the first index labeling the row,
and the second index labeling the column. For A ∈Mm×n(R) and B ∈Mn×k(R), the
product AB is given by (AB)ij =

∑n
l=1AilBlj. I.e. we sum over adjacent indices: the

second index of A and the first index of B. The definition of Av for v ∈ Rn amounts
to treating v as an n × 1 matrix with entries v

j
= v

j1
. Similarly, the definition of

(m-component row vector)× (m×n matrix) amounts to treating the row vector as a
1×m matrix whose entries all have 1 as the first index.

Some convenience, and even insight, can be gained if (i) we allow ourselves to
express “scalar times vector” by writing the vector on the left and the scalar on the
right, (ii) treat an (ordered) basis as a 1×(something) array of vectors, and (iii) extend
the rule of “indices that we’re going to sum over should preferably be adjacent” to
expressions that involve such an array of vectors. For example, letting e := {ei}ni=1

and e′ = {e′i}mi=1 denote the standard bases of Rn and Rm respectively, then for A ∈
Mm×n(R), the components of Av satisfy (Av)i =

∑
j Aij vj, but the images of the basis

vectors under the linear map TA : v 7→ Av satisfy TA(ej) =
∑

iAije
′
i =

∑
i e
′
iAij.

10

Something crucial to the standard conventions relating linear algebra to matrix
algebra is that, when dealing with matrices representing linear transformations, one
should never deviate from the rule that the first index labels the row and
the second index labels the column. However, it is actually good to deviate from
the convention of putting both indices downstairs—as long as one deviates correctly
(!), and maintains the distinction between what the first and second indices represent.
(We discuss below how to do this deviation correctly, and why that deviation is good.)
In each of the expressions Aij, A

i
j Ai

j, and Aij, the first index is i and the second is
j. The critical distinction between first and second indices is lost if one writes Aji or
Aij.

11

. . .

[transposes and natural adjoints]

. . .

10An insight that one can gain from this notation-convention: to be consistent with usual con-
vention for the action of GL(n,R) on Rn (i.e. (A, v) 7→ Av, a left-action), the preferred action of
GL(n,R) on the set of bases of Rn is the right-action, (A, e) 7→ eA. This manifests itself in the
definition of “principal GL(n,R)-bundle”—or principal G-bundle, wiht G a subgroup of GL(n,R).
Conventionally we take the G-action on the bundle’to be a right-action.

11Fortunately, virtually no one uses notation like “Aij” for matrices of linear transformations.
Unfortunately, for other tensors, especially those with more than two indices, some authors implicitly
treat the index-order as being alphabetical. The problem with this should be self-evident if you ask
yourself which index comes first in “A7

3”—or “Aζξ” if you don’t know the Greek alphabet in order.
Although in practice this problem does not arise with matrices representing linear transformations,
this problem that arises in more complicated or less familiar contexts can be distilled to this simple,
familiar context.

There are some matrices for which it is immaterial which index comes first. For example, if we
choose to write the Kronecker delta as “δij” rather than “δij”, we cannot get into trouble from the
ambiguity in index-order.
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Now let V,W be arbitrary vector spaces of finite, positive dimension n and m
respectively, and let e := {ei}ni=1 and f := {fi}mi=1 be bases of V and W respectively.

. . . [adjoint w.r.t. an inner product]

6.5 Complements and direct sums

Recall that if V,W are vector spaces, the direct sum12 V ⊕W is defined to be the
Cartesian product V ×W together with following the zero-element and vector-space
operations:

0V⊕W := (0V , 0W ).

(v, w) + (v′, w′) := (v + v′, w + w′) for all (v, w), (v′, w′) ∈ V ×W
c(v, w) := (cv, cw) for all c ∈ R and (v, w) ∈ V ×W.

Remark 6.18 Many people use the notation “V ×W” for V ⊕W , as they may have
been taught in a first course on linear algebra. This is not literally wrong; it is simply
a convention that can lead to a great deal of confusion several settings, one of which
is multilinear algebra (= tensor algebra).13 For example, tensor product distributes
over direct sum: given vector spaces V,W, and Z, there is a canonical isomorphism

V ⊗ (W ⊕ Z) ∼=
canon.

(V ⊗W )⊕ (V ⊗ Z).

This looks much less natural if written as

V ⊗ (W × Z) ∼=
canon.

(V ⊗W )× (V ⊗ Z),

a situation only made worse by comparing it with another true statement,

V ⊗ (W ⊗ Z) ∼=
canon.

(V ⊗W )⊗ Z.

N

Recall that, for subspaces X, Y of a vector space V , the notation X + Y denotes
{x+ y : x ∈ X, y ∈ Y }, also written as span{X, Y } and identical to span{X ∪ Y }.

12Some people call this an “external” direct sum, to distinguish it from “internal” direct sum in
which V and W start out as subspaces of a single larger space.

13Vector spaces are, among other things, (abelian) groups. For two general groups G and H,
the notation G × H is used for the direct product. The direct product of G and H is the group
whose underlying set is the Cartesian product G×H, with group operations defined componentwise:
(g1, h1)(g2, h2) = (g1g2, h1h2). When G and H are abelian, so is their direct product, and for each
of G,H,G ×H, it is common to write the group operation additively rather than multiplicatively,
leading to: (g1, h1) + (g2, h2) = (g1 + g2, h1 + h2). For the same reason, when G and H are abelian,
the direct product is often called the direct sum, and written G⊕H.
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Definition 6.19 Let V be a vector space, X ⊂ V a subspace. A subspace Y ⊂ V is
called a complement of X if (i) X + Y = V and (ii) X ∩ Y = {0}. N

It is immediate that, in the context of Definition 6.19, Y is a complement of X iff
X is a complement of Y . Hence we may call X and Y (mutually) complementary, or
complements of each other.

Example 6.20 Let V,W be vector spaces. The subsets V × {0W} and {0V } ×W
are subspaces of V ⊕W . They are complements of each other and are canonically
isomorphic to V and W respectively.

Remark 6.21 Note that the word “orthogonal” does not appear in Definition 6.19.
Orthogonal complements are a special case of complements, and are not defined unless
an inner product has been specified. Even then, in the absence of completeness, an
“orthogonal complement” is not always a true complement in the sense of Definition
6.19.

In a Hilbert space (a complete inner-product space), the orthogonal complement
X⊥ of a closed subspace X always exists, is unique, and is a true complement. But
a proper, nontrivial subspace of a mere vector space never has a unique complement;
in fact it has infinitely many complements. For example, in R2, let X denote the
subspace R × {0}, the “x-axis.” Then every 1-dimensional subspace of R2 other
than X itself—graphically, every non-horizontal straight line through the origin—is
a complement of X. N

Remark 6.22 Every subspace of a vector space has a complement. To see this, let
V be a vector space and let X ⊂ V be a subspace. Let BX be a basis of X. Extend
BX to a basis B of V (see Remark 6.1). Let BY = B \ BX and let Let Y = span(BY ).
Then it is easily seen that Y is a complement of X.

However, in situations in which Zorn’s Lemma (or anything equivalent) must be
used to extend BX to a basis of V , a complement Y constructed as above is “essentially
useless”; see Remark 6.2. N

Recall that if V is a vector space and X is a subspace, then a (linear) projection
of V onto X is a linear map π : V → X for which π|X = idX . We also call a linear
map P : V → V a projection if P 2 := P ◦ P = P ; observe that any such P is a
projection from V to image(P ) in the previous sense of “projection”. Note that given
a projection π : V → X as in the first sense of “projection”, if ι : X ↪→ V denotes the
natural inclusion map of X into V , then the map P = ι ◦ π : V → V is a projection
in the the second sense, a linear map P → P satisfying P 2 = P .

When X and Y are complements of each other in V , we also say that V is the
direct sum of these two subspaces. Parts (c) and (d) of the next proposition express
how the two uses of the term “direct sum” are related.
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Proposition 6.23 Let V be a vector space and let X, Y ⊂ V be mutually comple-
mentary subspaces. Then:

(a) For each v ∈ V , there exist unique elements vX ∈ X, vY ∈ Y such that
v = vX + vY .

(b) Because of the uniqueness in (a), there are well defined maps πX : V → X,
πY : V → Y , satisfying v = πX(v) + πY (v) for all v ∈ V . These maps are
(linear) projections. If ιX : X ↪→ V and ιY : Y ↪→ V the inclusion maps of X
and Y , respectively, into V , and we define π̃X = ιX ◦πX and π̃Y = ιY ◦πY , then
π̃X and π̃Y are projection maps V → V satisyfing π̃X + π̃Y = idV .

(c) The map L : X ⊕ Y → V defined by L(x, y) = x+ y is an isomorphism.

(d) Define proj1 : X ⊕ Y → X and proj2 : X ⊕ Y → Y by proj1(x, y) = x and
proj2(x, y) = y. Then the following diagrams commute.

X ⊕ Y
L
- X + Y = V

X

proj1

?

idX
- X

πX

?

X ⊕ Y
L
- X + Y = V

Y

proj2

?

idY
- Y

πY

?

Figure 6: Diagrams for Proposition 6.23

Remark 6.24 Note that a subspace X of a vector space V does not determine a
projection-map V → X all by itself. In Proposition 6.23, changing the choice of
complement Y changes the map πX . Both complementary subspaces X and Y are
needed in order to define either projection-map πX , πY .

In a Hilbert space, the notion of orthogonal projection onto a closed subspace X
makes implicit use of the uniqueness of the orthogonal complement X⊥; see Remark
6.21.N

Remark 6.25 In the setting of topological vector spaces, the decomposition of a
vector space V as the direct sum of two subspaces X and Y is useful only if the
projection maps πX , πY in Proposition 6.23 are continuous. A necessary condition for
the continuity of these projections is that the subspaces X and Y be closed. (As an
extreme example, suppose that X is a dense, proper subspace of V , and let Y be a
complement of X. By taking a sequence in X converging to a nonzero element of Y ,
it is easy to see that the projection πY cannot be continuous, and therefore neither
can πX = idV − πY .)
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6.6 Quotient vector spaces

Throughout this subsection, V is a vector space and H ⊂ V a subspace.

A vector space is a module over R, and a subspace is a submodule. Hence the
quotient (vector) space V/H is defined; it is simply the quotient R-module. Thus the
elements of V/H are the H-cosets in V (translates of H by elements of V ). The zero
element of V/H is the coset H = 0V + H, and the vector-space operations on V/H
are defined by:

(v1 +H) + (v2 +H) := (v1 + v2) +H for all v1, v2 ∈ V,
c(v +H) := (cv) +H for all c ∈ R, v ∈ V.

(Students not familiar with the definition of quotient modules should check that the
operations above are well-defined. Well-definedness is something that needs to be
checked—unless one has done it before—since, except in the case H = {0}, a given
element x ∈ V/H does not uniquely determine an element v ∈ V for which x = v+H.)

Exercise 6.26 Show that, if V is finite-dimensional, then

dim(V/H) = dim(V )− dim(H).

Remark 6.27 As a set, a quotient vector space V/H is simply V/ ∼, where ∼ is the
equivalence relation on V defined by declaring v1 ∼ v2 ⇐⇒ v1 − v2 ∈ H.

Proposition 6.28 Let V be a vector space, let H be a subspace of V , and let Y be
a complement of H. Let πH : V → H and πY : V → Y be the projection maps
defined in Proposition 6.23(b). Let π : V → V/H denote the quotient map. Then
π|Y : Y → V/H is an isomorphism.

Thus, for any given complement Y of H, the quotient space V/H is canonically
isomorphic to the subspace Y .

Proof: Exercise.

Remark 6.29 Do not be misled by Proposition 6.28 into thinking that a quotient
space is “the same thing as” complementary subspace. The quotient space V/H is
canonically defined by the pair (V,H). As noted earlier, in general a subspace H has
infinitely many complements. Additional structure (e.g. a Hilbert space structure) is
needed if one wishes to single out a preferred complement.

6.7 Finite-dimensional vector spaces: topological aspects

As mentioned in Remark 6.12, all norms on a given finite-dimensional vector space de-
termine the same topology (called the norm topology). This topological independence-
of-norm property is a consequence of the following fundamental result (usually proven
in an advanced calculus course).
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Theorem 6.30 On any finite-dimensional vector space V , all norms are equivalent.
I.e. given any two norms ‖ ‖, ‖ ‖′ on V , there exist constants c1, c2 such that
‖v‖′ ≤ c1‖v‖ and ‖v‖ ≤ c2‖v‖′.

The norm topology is the standard topology on any finite-dimensional vector
space, and is the “default” topology assumed for the remainder of this subsection.

Exercise 6.31 Show that every subspace of a finite-dimensional vector space is
closed.

Theorem 6.30 has many important corollaries, some of which are assembled into
a single multi-part corollary below.

Corollary 6.32 Let V,W be finite-dimensional vector spaces.

1. Every linear map V → W is continuous.

2. The product topology on V ×W coincides with the norm topology on V ⊕W .

3. If W ⊂ V , then the relative topology on W (as a subset of V ) coincides with
the norm topology on W .

4. Every surjective linear map V → W is an open map.

5. If W ⊂ V , the quotient topology on V/W coincides with the norm topology.
Hence, in the finite-dimensional setting, the isomorphism in Proposition 6.28
is a homeomorphism with respect to the norm topology on the domain and the
quotient topology on the codomain.

Exercise 6.33 Prove Corollary 6.32
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